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INTRODUCTION

There has been considerable interest in recent years in extending the
theory of Calderon—Zygmund singular integrals to operators whose kernels
are concentrated on (or singular along) submanifolds. Aside from the
extensive work on Hilbert transforms along curves, L* and L7 estimates
have be:n proven for translation-invariant operators on nilpotent Lie
groups whose convolution kernels are singular both at the group identity
element and along a submanifold of dimension >2 by Geller and Stein
[G-S], Miiller [Mu I, Mu II'], Greenleaf [G], and Ricci and Stein [R-S],
where in the last three references the submanifold is not necessarily smooth
at the identity. Nontranslation-invariant operators associated with a
smoothl’ varying family of submanifolds have been introduced and studied
by Phong and Stein [P-S I, P-S II]; they, however, assume that the
submani’olds are smooth and nondegenerate in the sense that the conormal
bundle f the singular support of the Schwartz kernel is locally the graph
of a caronical transformation. This nondegeneracy condition they term
“rotatioral curvature.” Uhlmann [U7] proved L? estimates for a class of
pseudod fferential operators with singular symbols associated with two
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cleanly intersecting Lagrangians, using the symbolic calculus for such class
of operators which gives, as a corollary, the L? estimates of Phong and
Stein.

The purpose of this paper is to simplify and unify the proofs of [P-S I,
P-S II, U, G], and extend the results to certain nontranslation-invariant
operators violating the smoothness and rotational curvature assumptions,
examples of which arise naturally in integral geometry. We emphasize
estimates on L? (or Sobolev spaces), but in fact the techniques handle
easily the analytically continued operators which are used to prove L’
boundedness.

In Section 1 we consider various spaces of distributions defined in terms
of iterated regularity which are sufficient to deal with the operators of
Phong and Stein and examine their representations as oscillatory integrals
with product type symbols. In order to handle operators associated with
cones and powers of real principal type operators, we also review the
spaces of Fourier integral distributions associated with two cleanly inter-
secting Lagrangians, introduced by Melrose and Uhlmann [M-U] and
Guillemin and Uhlmann [Gu-U], and the composition calculus (under
certain geometric assumptions) of Antoniano and Uhlmann [A-U]. The
proof of the L? boundedness of the Phong—Stein operators, presented in
Section 2, depends on the crucial observation of Melrose, in unpublished
lecture notes [M 1] which have influenced our treatment considerably, that
such an operator can be decomposed, via a parabolic microlocal cutoff,
into the sum of a pseudodifferential operator with symbol (or, more
accurately, amplitude) of type (1, 1) and a Fourier integral operator with
amplitude of type (4, 1). The L? boundedness of the pseudodifferential
operator follows immediately from the Calder6n—Vaillancourt theorem; on
the other hand, it can be shown that the composition of a Fourier integral
operator, associated with a canonical graph and with amplitude of type
(3, 1), with its adjoint is a pseudodifferential operator of type (1, 1), thereby
yielding the L* boundedness of the Fourier integral operator. This result on
compositions is essentially already in Beals [B], but not quite in the form
we need, since we are interested in Fourier integral operators given by
general phase functions and not just a generating function of the canonical
transformation. For the sake of completeness we provide a proof, which
follows closely the usual analysis of the composition of Fourier integral
operators, the main novelty being that Hormander’s theorem on the
invariance of classes of oscillatory integrals hold for type (4, 1).

It should be noted that the decomposition of a singular Radon transform
into two pieces, 7=T,+ T,, with T, and 7, T>* both “classical” singular
integral operators and hence bounded on L2, already occurs in the early
work of Nagel, Stein, and Wainger [N-S-W ] on Hilbert transforms along
variable curves in the plane.

580/89/1-14
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Singular Radon transforms on a manifold X belong to the class of
Fourier integral operators associated with two cleanly intersecting
Lagrangians, I7/(4, A), with 4 being the diagonal in T*Xx T*X and
A=N*7'  where Z is the support of the Schwartz kernel. (Elements of
I7Y(4, + ) are sometimes referred to as pseudodifferential operators with
singular symbols, since microlocally on A\A they are pseudodifferential
operato s whose principal symbols are singular at 4 n 4.) One can weaken
the smoothness assumption on Z at the diagonal of X' x X and still have A
be a smooth Lagrangian; this happens, for example, for variable families of
cones sz tisfying a curvature condition. The decomposition argument above
is not .available if A4 is not a canonical graph, since A‘cA is not the
diagonal (and may not even be smooth). However, there is a situation of
maximum degeneracy, namely when A is the flowout of an involutive
(coisotrpic) submanifold of T*X\0, for which there is a composition
calculus for I7/(4, A), due to Antoniano and Uhimann [A-U]. Using this
calculus, we establish in Section 3 the L? boundedness of elements of
174, ), A a flowout, and then formulate classes of singular Radon
transforms associated with variable families of cones to which this applies.
The flowout condition is automatic in the translation-invariant case; it
should »e pointed out that the “geometric” proof of the boundedness in
[G] is -eally a special case of the argument here (in disguise). The results
here arc: in some sense complementory to those of [R-S, Mu I, Mu II]
mentiored above, since for a translation-invariant operator on a non-
commui ative nilpotent group, A is usually not a flowout.

Final y, in Section 4 we apply the results of Section 3, in combination
with those of Greenleaf and Uhlmann [G-U], to obtain some estimates
in integral geometry. If (M, g) is an n-dimensional riemannian manifold,
we may (at least locally) form the (2n—2)-dimensional manifold .# of
geodesics on M and define the X-ray transform

A= SN ds e, [eCFM)

An n-dimensional submanifold ¢ <.# is called a geodesic complex.
Followiig Gelfand, one can form the restricted X-ray transform
R, f =:%f|, and ask to what extent %, f determines f. In [G-U], it was
shown that if % satisfies a generalization of Gelfand’s admissibility
criterion, %, has a relative left parametrix constructed from a relative
parameirix for #50#,. In fact, subject to a curvature hypothesis,
Ry o R, €174, A), with Gelfand’s criterion implying that 4 is a flowout.
The results of Section 3 can then be used to derive Sobolev space estimates
for &, ; in particular, there is a loss of ; derivative, reflecting the particular
way thet the conormal bundle of the point-geodesic relation fails to be a
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canonical graph. (There are closely related results in Guillemin [Gu II],
where, moreover, A need not be smooth.) On the other hand, for “many”
complexes in general position, which do not satisfy Gelfand’s criterion, %,
satisfies a berter estimate: there is a loss of only  derivative, which follows
from results of Melrose and Taylor [M-T] on folding canonical relations.

Phong and Stein have informed us that they have reproven their
estimates, using a parabolic cutoff that seems to be different from ours.!
L” estimates for some restricted X-ray transforms in R” are in Wang [W].

We thank R. Melrose for allowing us to make use of the material in
{M I, M II] and for helpful discussions. The first author thanks the
Mathematical Sciences Research Institute, where some of this work was
done, for its hospitality and support.

1. OPERATOR CLASSES

In this section we shall review the pertinent facts from the theory of
product-type conormal distributions and the associated distributions that
will be used in this paper. First we recall the definition of a classical
conormal distribution [H II, p. 4].

DEerINITION 1.1. Let X be a C* manifold of dimension n, and Sc X a
smooth submanifold. The space of conormal distributions on X with
respect to S of order m, denoted I"™(X; S), is the set of all distributions
ue 2'(X) such that

Vi---Viue H "~ "4 (X), Vk=0, (1.2)

loc

where the Vs are C* vector fields on X which are tangent to S, and
H;; > (X) is the usual Besov space. Since we will not be using this definition
and its generalizations to find the exact order of distributions, we will work
with Sobolev spaces rather than Besov spaces.

When we have two submanifolds (or subvarieties) S, S, < X, we can
define a space of conormal distributions associated with S, U S, allowing
interaction at S, N .S,, under the assumption that the conormal bundles
N*S,, N*S, are smooth and intersect cleanly in T*X. This space was
defined using oscillatory integrals with singular symbols in [M-U, Gu-U7;
we shall review this approach below, but first we wish to consider the case
where S, and S, are smooth and intersect cleanly. We shall follow here the
notes of Melrose [M-U] and define this space of product-type conormal
distributions using iterated regularity, in analogy with (1.1). Recall

DeriNITION 1.3, S|, S, < X intersect cleanly if S; .S, is smooth and
T(8$,nS,)=TS, nTS,.

! This has appeared. See [P-SII1].
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For s mplicity, we shall restrict our attention to nested submanifolds
S,c8,€X, (1.4)

which i; relevant to the Phong-Stein operators. Of course, in this case
S, and §, intersect cleanly.

DerirTION 1.5, Let #7(S,, S,) be the space of smooth vector fields on
X whicl are tangent to both S, and S,.

(Note that clean intersection is exactly the right condition to make
“tangen : to both S, and S,” unambiguous.)

DernniTION 1.6, The space of product-type conormal distributions with
respect 10 S, S,, denoted by I(X; S, S,), is the set of all ue 2'(X) such
that

V,---Veue H? (X) for some s, e R and Vk =0 (1.7)

loc

with V;=77(S,, S,), 1<j<k.

It is straightforward to prove

ProposiTiION 1.8. If u e I(X; S, S,), then WF(u) = N*S, U N*S,.
Moreover, away from S,, ue I(X; S{\S,).

We will assume from now on that S, is of codimension d; and S, is of
codimersion d, +d,. Introduce local coordinates near a point of S, such
that

{Sl={x1=-~-=xdl=0} (19)

S, = {x1= =xd1+d2=0}’

and deaote points in R" by (x, x",x"), with x'=(x},..,x,), x"=
(X115 o Xava) X" =Xgyyas 15 X,); let (&, &7, ") be the dual
variables. We now find a local basis for ¥°(S,, S,), and thus for the ring
of differzntial operators generated by #7(S,, S,).

PropoSITION 1.10. If ue 2'(R") and S, =S, = R” are as in (1.9), then
uel(R”; S,, S,) iff there exists an s € R such that

DEDE.DL((x') (x")° u) e H(R"),

loc

Y mwltiindices o, B, vy, 6, p such that \p| = |a|, |61 + |p| = |a| + |B]. (1.11)

Prooy. It is enough to show that the differential operators in (1.11)
form a ocal basis for the ring generated by ¥°(S,, S,). This will be proven
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by induction on the order of the operator. First, we claim that the vector
fields

D, for k>d +d,; x;D, for i<d, ifj<d,

and (1.12)
i<d +d, if d<j<d +d,

give a basis for ¥°(S,,S,) (over C*(R")). To see this, note that if
V= Zi]lzl ai(x) Dx,- + Z_;il=ti;i?+-1 bj(x) ij + Zz=d1+dz+l ck(x) ka’ WIth
a;, b;, c,e C*(R"), then V tangent to S, implies that the ¢,’s must vanish
at x'=0, while V' tangent to S, means that the a,’s and b,’s must vanish
at (x', x")=0.

Now, suppose by induction that for some /, the operators in (1.11) with
la| +|B] + |yl <! span the C*(R”)-submodule of the ring generated by
(S, S;) consisting of those operators of order <l If V,e ¥(S,, S,),
1<j</+1, then

Vi Vi =Y abfl DEDELDL((X') (x") $yxD,)

+ 2 b5 DYDY DL (XY (x") ¢iDy), (113)

where the sum extends over |a| + |8| + || </, with the other indices limited
as in (1.11) and (1.12), and the a’s and ¢’s are C* functions. Commuting
the D, , j<d,, and D, , k>d, +d,, past the x', x", ¢ factors then gives a
sum of terms as in (1.11), with |a| + 18] + 17| <!+ 1. ]

The above can now be used to give an alternate characterization of
IR"; S,,S,), with §, and S, as in (1.9), in terms of oscillatory integrals
with symbol-valued symbols.

DerFINITION 1.14. Let (&', ") be coordinates on R“" x R¥. For me Z*,
M, M’ eR, the space of symbol-values symbols of order M, M’ on R™ x
R% x R, denoted by $™ ™ (R™; R%, R%), is the space of smooth functions
a(x, &, £") satisfying, for every compact K< R™,

Sup | D3 D4 DLa(x, &', ") < Cinp, <8 EYM 141 (L7 M =18,
xeK
V multiindices a, . (1.15)
Here, <1, &")> = (1+ &7+ 18117, (&> = (1 + &}
Using standard integration by parts arguments (cf [H1]), to each

ae S"M(R™; R, R%) we can, if m>d, +d,, associate an I,e 9'(R™)
defined by the oscillatory integral

=] e g e de g (1.16)
R4 x R%2

These give us the second characterization of I(R”; S,, S5,).
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ProposiTION 1.17.  Let ue (R*; S,, S,), with S, and S, as in (1.9). Then
u=1I, with ae S (R"; R, R*%) for some M, M'.
Proof We can assume without loss of generality that ue &’ (R")n

IR";S,, S,). Taking the partial Fourier transform of u in the x’, x”
variable; and using (1.11), we obtain that

(él)a (é/l)ﬂ D);ngngwﬁ(é,, 6", xm
ELZ(Rdl‘ X Rdz’ X Rn—dl—dz; <€/, é”>50 dér d&n dxm) (118)
for sone s,eR, when |p|=|al, ||+ {p|>=|a|+|8]. By the Sobolev

embedd:ng theorem, we get that a(x, &', &")=u(&', £", x™) satisfies (1.15)
for some M, M'eR. |

DEFInITION 1.19. For M, M'eR, S; and S, as in (1.9), I**(R";
S, S,) s the space of oscillatory integrals of the form (1.16) where S, S,
are give1 locally by (1.9) with ae S¥ ™ (R"; RY, R®).

We n:xt show that this definition is actually coordinate free.

PROPCSITION 1.20. The space I (R"; S,, S,), with S|, S, as in (1.4),
is independent (modulo C*(R")) of the choice of local coordinates.

Proof.” Suppose that u is of the form (1.16) with the integral absolutely
convergent. A change of local coordinates that preserves (1.9) necessarily
has

d
X = Z Aij()’)}’js 1<i<d,
j=1
dy + do
xi=Y B;y(»)y, di<i<di+d,
it

with 4, B; smooth. Inserting this in (1.16) and introducting

dy di+dy

-'3i=ZAji5j+ Z B¢, 1<igd,,
j=1 Jj=di+1
dy+dy

E,= Y B¢, d <i<d, +d,,
J=di+1

one obtiuins the new representation

u(y):J.ei(E,".)”+5"-y")b(y, E’, Ell)dsl dE”, (121)
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with b(y, &', 2")y=a(x(y), ¢'(y, &', E"), &"(y, &', E")) times the Jacobian
of the change of variable (£,&")—>(Z,E"). It is easy to see that
be MM (R"; R“, R%). For general values of M, M’, for which the integral
is divergent, one as usual integrates by parts to reduce the calculation to
the convergent case. ||

DermimioN 122, Let §,© S8, S X be nested manifolds with dim X=n
and S,,S, of codimensions d,,d,+d, in X, respectively. Then
IMM(X,; S,,8,) is the space of locally finite sums of distributions of the
form (1.16) where S, S, are given locally by (1.9).

Now let X be as above and let A< T*X\0 be a conic Lagrangian
manifold. Let 7™(X; A4) be the space of Fourier integral distributions on X
associated with 4 [H 17; an element of I”(X; A) is given as a locally finite
sum of expressions

u(x) = Jm e#9q(x, 0) do, (1.23)

where the phase function ¢ parameterizes 4 and a is a symbol of order
m— N/2 + n/4. By slight abuse of notation, we will say that a ue 2'(X) is
in I™(X; A) if for each i, € A there is a microlocalization of u near 4, which
belongs to I"™(X; A). When we wish to emphasize the symbol class of which
a(x, 0) in (1.23) belongs, we will write I7';(X; 4); otherwise, p=1, 6=01s
understood.

PROPOSITION 1.24. Let ueI™™(X;S,,S,) as in (1.19). Then ue
[ M @2 NXS\NXS, ) and ue IM;H 42~ "R(X; N*S,\N*S)).

Proof. 1In local coordinates with S, and S, as in (1.9), we have the
representation (1. 16) with ae S™M(R"; R, R%). In these coordinates,
N*S, ={(0,x", x"; £,0,0): x"eR%, x"eR"“~*% and &eRY} and
N*S,={(0,0, x”' {" E0): x"eR U EeRY and ¢"eRYY. Let

=N*S; A N*S,; then = {(0,0, x"; &, 0, 0): x"eR"~4—% geRYY.
On N*S\X, we have x" 0 and repeated integration by parts in the &”
variable shows that we can lower the order of a arbitrarily in the &”
variable and so obtain {modulo C*) the microlocal representation

u= f e Sb(x, &) dE',  beSU(R"xR), (1.25)

Thus, ue IY;F4/2~%*(X; N*S,\N*S,). On the other hand, on N*S,\X, we
have ¢"#0 and so aeSY;M(R"xR¥*%) there by (1.15), yielding
uEIM+M “+{dy +d3)/2 — n;’4(X N*Sz\N*Sl). l
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For 1anore general classes of product-type conormal distributions, the
iterated regularity definition using vector fields in (1.6) is not applicable.
For example, in treating singular integral operators with conical
singular ties in Section 3, we will deal with the case that §, has a conical
singular ty; it may happen that ¥°(S,, S,) is empty. Also, more generally,
we may associate classes of distributions to intersecting Lagrangians which
are not necessarily conormal bundles. We now describe the spaces of
distriburions associated with pairs of Lagrangians, defined in [M-U,
Gu-U], for a particular case, namely when one of the Lagrangians is the
diagona in T*Xx T*X. These are sometimes referred to as pseudo-
differential operators with singular symbols.

Let X be of dimension n and 4 < (T*X\0) x (T*X\0) the diagonal; 4’
1s Lagrangian for the product symplectic form nfwry+nfwrey, and 4’
contains the wave front set of a pseudodifferential operator on X. Let
Ac(T*X\0)x (T*X\0) be another conic Lagrangian. We assume that

4 and A intersect cleanly. (1.26)

Let 2= 4 n A and denote the codimension of 2'in 4 (and A} by &k, 1 <k <
2n— 1. Consider a model case where Y=R", = {{x,&;x, &)} and

Z—_' {(x, é, y’ q):xn:yu’ f’=71’30, é”zn”}- (1.27)

Here we are denoting a point of R” by (x/, x")e R*x R"~* Then X =
{X’= yr' x//= yh" é’=77,=(), é/lznll}‘

DeriNimioN 1.28. For meZ™* and p, /e R, the space of product-type
symbols denoted S”/(R™; R”, R*) is the set of all smooth functions on
R™ x R” x R* such that for all K< R™ compact,

IDEDIDYa(x, & 6)l < Cup (1 +1ED)P (L +al) ~ L (1.29)

DerinmioN 1.30. The class of operators 17/(R" x R"; 4, A) consists of
those mippings 4: £(R"”) - 2’'(R") with Schwartz kernels

Klx, y = [0y =9 e s og(, g5, ¢ o) dodsde,  (131)

with ge §pAn/2+k/2,Ifkj2(R2n+k; Rn’ Rk)

We will identify elements of I*' with their Schwartz kernels without
comment. For 4 e I*!(R"x R"; 4, A), it is straightforward to see that the
analogucs of (1.8) and (1.24) hold (see [Gu-U]):

WFAY =dud and Ael" ' (R"xR"; A\X), Ae P(R"x R"; A\X).
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From the proof, one obtains the microlocal representation of 4 on A\Z
{modulo terms of lower order)

Ka(x, p)=[ e a(x, 3,0,¢, &) de

which, given the product nature of a, exhibits A4 as a pseudodifferential
operator with singular symbol. The following results, proved in [Gu-U],
allow the definition of 77/(X x X; 4, A) in general.

PROPOSITION 1.32. Let j: T*(R"XR")\0—- T*(R"xR")\O be a cano-
nical transformation such that §(A)< 4, #(A)< A, and let F be a Fourier
integral operator of order O associated with . Then F(I”'(R"x R"; 4, A)) <
I (R x R"; 4, A).

ProPOSITION 1.33. Given 4,4 < (T*X\0) x (T*X\0) intersecting
cleanly in codimension k, there exists a canonical transformation ¥:
(T*X\0)x (T*X\0) = (T*R™\0) x (T*R™\0) such that y(4)< 4, y(4)< 1
(for the same k).

Thus, one defines I7/(X x X; 4, A) to be those operators whose Schwartz
kernels are locally finite sums of F(K,)s, AeI”(R"xR"; 4, A) and F
associated with y as in (1.33).

We can now give an iterated regularity characterization of I”/(X x X;
4, A4) as in (1.6), but now using first order pseudodifferential operators
instead of vector fields. Note first that by representing the Schwartz kernel
u=K,(x, y) of an Ae " (R"xR"; 4, A) as in (1.31), we may obtain an
oscillatory integral representation of u as an element of I (R"xR";
Sy, 8,), where S;={(x,x",y,y"): x"=p"} and S,=dg={(x, x",
Y,y x'=y, x"=»"}. To avoid confusing notation, introduce
coordinates z'=x"—y"eR"" ¥ z"=x'—y eR¥, and z”"=x+yeR" on
R” x R". Thus, d, =n—k, d,=k. We have

u(z)= [t €+ (f e a(x, y, s, (€, &), o) ds da) de’ de".
(134)

The inner integral may be evaluated using stationary phase and the symbol
estimates (1.29); the result, b(x, y, &', £"), lies in S (R"xR"; §,, S,) for
M=p—n/2+k/2, M'=1—k/2. Thus, I*(R"xR"; 4, A)=[p "2+ k2l-k2
(R"xR"; S, §,). Since the latter space is characterized by iterated
regularity via vector fields tangent to S; and S, as in (1.6), so is the former.
Now, if F is a Fourier integral operator of order zero associated with a y
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as in (1.33), and Ve¥'(S,,S,), then VoF ! is a first-order pseudo-
differen:ial operator P on X x X which is characteristic for 4u 4, ie.,
0 prin(P) =0 on 4 U A. We thus are lead to

ProOPOSITION 1.35. If ue @' (X x X) and there exists an sq€ R such that

P,.--Poue H? (X x X), all k=0, (1.36)
Jor all jirst order P; with 6 ,,;,(P;)=0 on 40 A, then uel”(XxX; 4, A)
for som> p,leR.

For the results of Sections 3 and 4, we shall also need the symbol
calculus for /(X x X; 4, A), and a composition calculus assuming that A
satisfies a certain geometric condition. We will describe these briefly; the
reader i3 referred to [M-U, Gu-U] for more details.

If ue ”/(X x X; 4, A), by the above discussion ue I” /(X x X; A\X) and
uel?(Xx X; A\ZX); thus, by the standard theory of Fourier integral
operatos, u has invariantly defined symbols oy(«) and o,(u) on A\X and
A\ZX, respectively. Because of the product-type estimates satisfied by the
amplitude used to define u, g,(u) has a singularity at X, and in fact oy(u)
is conormal for 2 on 4, belonging to the space of sections R’ **(Q2,® L,;
4, %) singular of order /—k/2 defined in [Gu-U, p. 260]. The space
SPU(XxX;4,%) is defined to be those elements of R'~*? which are
homoge 1eous of degree p+I/+n/2. If uel” (XxX; 4, A), then oy(u)e
SP(Xx X;A.X), and the symbol calculus is summarized by

ProrcsITION 1.37.  The following sequence is exact:

017" XxX;4, )+ 1P V(X x X; 4, A4)
SIP XX X; 4, 4) =5 SP(XxX; 4, Z) - 0.

If Ac:(T*X\0)x(T*X\0) is a canonical relation, ie., is a conic
Lagrangan for the difference symplectic form nfw .y —n¥wrey, we
denote the class of operators with Schwartz kernels in I”/(X x X; 4, 4') by
I7'(4, A). From [Gu-U, Proposition 6.2] we have that (), I7'(4, A)=
I*(A), the space of classical Fourier integral operators of order p
associated with 4, and ), 17!(4, A)= CF(X x X), the space of smoothing
operators. In order to obtain a composition calculus for 77/(4, A) we need
to restrict A4 so that new wave front set does not occur in the composition.
Recall that a submanifold I'c T*X\0 is involutive (or coisotropic) if
I'={(x,%): p;(x,£)=0, 1<i<k}, with the p/s defining functions for I
that are in involution at I": all the Poisson brackets {p;, p,} vanish on I.
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I is then foliated by the integrable distribution consisting of the span of the
H,’s. The flowout of I' is

Ar= {(x, GrmMeT*XxT*X: (x, &) el (y, 1)

k
=exp<z thpj) {x,&)te R"‘}. (1.38)
J=1

A is a canonical relation (if I" is conic). For A4 of the form A,, the
composition calculus is summarized by

PropoSITION 1.39. If A=A, for a conic, involutive ' T*X\0 of
codimension k, then I"'(A, A)oI?"" (4, A)S [P+7 +R2IHU=k2( 4 A), and
ao(A o B)=0¢(A)-ao(B).

2. THE CaNONICAL GRAPH CASE

In this section we prove local L? estimates for operators whose Schwartz
kernels lie in the class ™' (X x X; S|, S,), where S, is the diagonal of a
smooth n-dimensional manifold X, and 5,25, is smooth and such that
N*§ is a (local) canonical graph. We then show that the singular Radon
transforms of Phong and Stein [P-S I, P-S I1] belong to this class, as well
as the operators arising in the analytic-interpolation proof of L? estimates.
The L? estimates for these operators were previously reproven by Uhlmann
[U] using the symbolic calculus (1.37) developed in [Gu-U7]. Here, we
give a simpler proof, making use of an observation of Melrose [M 17 that
elements of I{X x X; S}, S,) can be decomposed into a sum of two classical
Fourier integral distributions, conormal for S, and S,, respectively, but
with amplitudes of type (3, 1). The idea of a parabolic cutoff goes back to
Boutet de Monvel [BoJ; in this context, it was used by Guillemin [Gu I]
in defining singular symbols.

ProrosiTION 2.1 (Melrose). Let S, < 8, € X x X, with dim X = n, codim
S1=d1, andCOdil’n52=d1+d2. Then,l_’f"d2<M,<0,
IM'MI(XX X; 5, Sz)gl?/lz’:uz(XXX; S1)+If7£:1/2(XX X, S3),

where M" =M+ M'/2+ (1/2)(d, + d, —n).

Proof. Recall that for Sc Xx X, I'(Xx X; S) is just different nota-
tion for Hormander’s class [ pslXxX; N*S). In local coordinates,
ueI™M™(XxX;S,,S,) can be represented as in (1.16):

u(x): ei(X"f’ﬂkx"-{”}a(x’ 5!, 5#) dés d‘sr}"

R4+
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with a:S"M(R*x R"; R, R*), where (x', x", x”) are coordinates on
X x X such that §; = {x'=0}, §,={x'=x"=0}.
Pick 1 cutoff function ¢ € C3(R), ¢ =1 near 0, and set

Hx' &+ x"- & <£N>2 ! " ’ "
u1=Je‘ )<P(<é,,é,,>>a(?@f,5 )de' d& (2.2)
and u, =u—u,. On the support of (1—@)({&">%/{E,E")), we have
CE"y 2 ¢, "> and the symbol estimate (1.15) becomes

10308.3%((1 — p)a)| < c(&, gryM+ Mt =2, (23)

which is of type (3, 0). Of course, this condition is not coordinate invariant
and so ‘ve get that u, has a representation as a conormal distribution for
S, witt an amplitude of .order M+ M'/2 and type (3, 3). Thus,
uzeI{‘/’z* ?4/2+(d1+d2)/2 "/2(X>( X; Sz)

On tle other hand, write u, as a conormal distribution for S, with
amplitucle

(€2 )
b !x SE ’ ” //' .
(&) =], e o (1ot 88 24)
Then égﬁaib(x, £') will be a sum of terms, the leading one of which will be
ixT - E ey <€”>2 o ’ 4 ”
Jer sy o( g ) dtamenenas. @)

Noting that the integral is over a ball of radius <c{(&')'? in R®
and simply estimating the integrand by its absolute value via (1.15),
we may dominate the integral by c(& Y™ 1% [ pM+l I+ d1 gp o
cE M- MPRH 2=+ §f M’ 4 d, > 0. The other terms in 0%.0%.b(x, &)
are hanlled similarly; thus, #, has a representation as a conormal
distribut on for S, with amplitude of order M+ M'/2+d,/2 and type
53 ard so uelly P ari+a2-m2(xx X, S)). |

When S, is the diagonal 4 of X in X x X, we have written an element of
I"M (X x X; S, 4) as a sum of a pseudodifferential operator of type (5, 1)
and a Fcurier integral operator associated with the Lagrangian N*S, with
amplitude of type (3, 1). The Calderon—Vaillancourt theorem will allow us
to prove the main result of this section.

THEOR:M 2.6. Let A= S, S X with dim X=n, codim S, =d. Suppose
N*S < (T*X\0)x (T*X\0) and is a local canonical graph. Then, if
AeI™M (XxX;S,,4), then

A: L2 (X)— L2

comp loc

if max(M', M+ M'/2)<0 and M' > d—n.

(X)
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Proof. Here, d,=d, d,=n—d, and d,+d,=n. As noted above, by
(2.1), A can be written as a sum of a Fourier integral operator 4, of order
M+ M’'/2 and type (1,3), and a pseudodifferential operator of order
M+ M'/2 and type (1,3). The Calderon—Vaillancourt theorem [C-V]
applies directly to the latter to give L? boundedness. The boundedness of
A, is reduced to the Calderon—Vaillancourt theorem by the result that the
composition of a Fourier integral operator, associated with a canonical
graph and having amplitude of type (4, 3), with its adjoint is a pseudo-
differential operator of type (3, 3). This is a special case of a theorem of
Beals [B, Theorem 5.4] for general weights, but the proof in [B] is
actually only for “canonical operators,” where the phase function is a
generating function of the canonical transformation. Since we need the
result for Fourier integral operators with general phase functions, as in
(2.8), we present the (somewhat different) proof in full.

PROPOSITION 2.7. Let X< R" be open and A, be a properly supported
operator on X with Schwartz kernel

Kol p)=] e®t29,(x, y, 6) do (28)

(3

with ¢,(x, v, 8) a nondegenerate phase function parameterizing a Lagrangian
Ay such that Ay is a canonical graph. Let a, e S$,; 77 (X x X; R™). Then,
modulo smoothing operators, A, A¥ is a pseudodifferential operator of order

0 and type %, 3.

Proof. We follow closely the treatment of composition of Fourier
integral operators in Duistermaat [D, pp. 57-60]; this requires only
checking the dependence of the proof on the type of the symbol.

First note that 4,=A} is again a Fourier integral operator with

amplitude of type 3,  with representation

A5 f(x) = [ e=#0=04,(y, x,0) f() O dy. (29)

Let ay(x, y, 8)=a,(y, x, 6) and ¢,(x, y, 0) = —é,(, x, 8); ¢, parameterizes
A;l. As in [D], we write the Schwartz kernel of 4, - A¥=A4,°A4, as an
oscillatory integral

KA1 3 Az(x’ Z) = f ei(¢|(x, y,9)+¢2(y.z,a))a1(x, Vs 0) az()’, Z, O-) de dO' dy (210)

We introduce cutoff functions x,, x,, supported where |a| < cl6], |0] <c|a|,
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respectizely; on their supports we Thave |d, 4(¢,+¢,) =0,
|d(,.0)(¢1 + @3)| = ¢'|al, respectively. As in [D], the integrals

J«e"""”*"’”ggjala2 dddody, j=1,2,

are C* functions of x and z: one first integrates in o (resp. ), and then
uses the rapid oscillation of the exponential in the remaining variables to
integrat: by parts, which completely overwhelm the loss of 1 when differen-
tiating i1 x or z. We are thus left with the main term

Ruyoalx, 2)= [ im0 ommpix 2 0, 6) df do dy,  (2.11)

with b= (1 —y, — x,) @, a, being supported where |8| ~ |¢|. One introduces
a new phase variable j=|(0,0)| y, phase function ¢(x,z 0,0, j)=
¢1(x, §/ (6, 0)l, 0) + ¢,(7/1(0, 0)|, z, ), and amplitude

a(x, z, 0,0, )= (0, o)l "b(x,|(0 v z,0,a>;

one easly checks that ae S} (R"xR"; R*"*"). Forthermore, ¢ is a
nondegenerate phase function that parameterizes the diagonal. Modulo
C*, we have

Kia2)=  e**0alx,z ) de, (2.12)

where ¢ parameterizes the diagonal and a is of type %, 4 and of the correct
order to make 4,4 of order 0. It remains to show that we can replace ¢
by the usual parameterization of the diagonal, ¢y(x, z, £) on R" x R" x R”
and a ty an ayeS),,,(R"xR";R"). This follows from the fact that
Hoérman ler’s result on the equivalence of classes of oscillatory integrals
defined hy different phase functions parameterizing the same Lagrangian
still holls for amplitudes of type (%, 1). Following Hérmander [H I,
pp. 142-1477, we first decrease the number of phase variables as much as
possible. The key point is that in the integral (3.2.4) of [H I], stationary
phase is replaced by integration by parts. That is, if 6 € R" is denoted by
(0,0 eRY *x R, a(x,0)eS}, ,(R"xR") is supported in {|8”"|<
c|0'l}, and Q(8”, 6”) is a nondegenerate quadratic form on R*, then

b(x, 0') = f €@ a(x,6',6") do” (2.13)
R

belongs to S ffz“’l’/‘z/z(R" x R¥~%). By a rotation in R¥, we may assume that

Qe",8")= 2,02, with each 4;#0. Let ye C*(R), with y=0 near 0

JIJ/’
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and y=1 near oo, and set a,(x, 8, 0")=(1—x)(16"|/18'|'?) a(x, &, 6"),
ay(x, 0',0")=x(10"1/16'1'*) a(x, 0’, 8"). With b(x, 0), b,(x, 0’) defined by
(2.13), using a,, a,, respectively, we have b=b, +b,. The first term we
simply estimate by

b1(x, 8')] < la(x, ', 0")] dO” < c(1 + 10|y +*2,

167 < c97)12

For the second term, note that a, € S7), | ,(R" x R"). Define a differential
operator L=10"|723%_, (0,/2i4,)(9/00,), so that L(e’9)=¢"?; one has
L'=L+c|0"| 7% If aeSt,,,(R"xR"), then Lae(1/|6"]) S%, 73, while
(¢/16"1*) a € (1/16"|%) S%,.,,. Using L, integrate by parts M times in the
expression for b,(x, 0'):

by(x, 0') =j e (LM (ay(x, 0, 07))dO”.  (2.14a)

1012 < 18" < ' 16|

The integrand is dominated by a sum of terms of the form
107772 (1 +16')| +10”|)y"~ 2, 0<j< M; introducing polar coordinates,
the corresponding term of b,(x, 8’) is dominated by

J'("IHW (1+|01|+r)m~j/2 rj¥2M+kg£
c|612 r

<(1+|01|)m+k+1/272MJ¢ (1+r)m-j/2rj—2M+kﬂ
clor|-12 r

(1 +|g|)yn+hr-—M if j—2M+k<O.

Thus, choosing M >k arbitrarily large, we find that b,(x, 6’) is rapidly
decreasing, and so |b(x, 0')] <c(1 + 10’|)™ +*2. Derivatives of b(x, ') are of
the form (2.13), with a replaced by a derivative, and are handled in the
same manner, yielding be S1,5772(R” x RY %), In the application to (2.12)
(where the spatial variables are denoted by (x, z)), the number of phase
variables is decreased in this way to the minimum possible for a pseudo-
differential operator, namely #n, attained by the standard phase ¢y(x, z, &) =
(x —z)- & The resulting expression for the Schwartz kernel of 4, 4F is

Kayar(x, 2) = jw e Op(x, 2 0) b, (2.14b)

with be S}, (R xR") and § parameterizing the diagonal. By [H I,
Theorem 3.16], ¢ and @, are equivalent in the sense that there exists a

difffomorphism @: R?” x (R™\0) » R?*" x (R"\0), homogeneous of degree 1
in the last variable, so that ¢ ® = ¢,. Making the corresponding change of
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variable in (2.14b), we preserve the symbol class and obtain a representa-
tion of 4, A¥ as a pseudodifferential operator of order 0 and type (3, 3).
This fin shes the proof of Proposition 2.7. |

Proposition 2.7 immediately implies Theorem 2.6 when N*S, is a
canonicil graph. When N*S, is merely a local canonical graph, we form
microlocal partitions of unity 3, P/(x, D)=1=3%, Q%(y, D), such that on
the support of each p’(x, £)-¢*(y,n), N*S, is a canonical graph. Then
A=Y, P'4,0"=3,, A; each A} is a Fourier integral operator with
amplitude of type 1, 3 to which (2.7) applies, finishing the proof of (2.6).

We now relate the above results to the singular Radon transforms of
Phong and Stein. We are going to follow closely their notation; in
particulur, for simplicity we limit ourselves to the case of hypersurfaces.
A singular Radon transform, R, is defined by integrating a function defined
on a sriooth manifold X of dimension n+1 along a hypersurface X,
passing through each point pe X against a distribution supported on X,
having . singularity of the type of a Calder6n-Zygmund singular integral
at p. A rondegeneracy condition, called rotational curvature, is imposed on
the family of X,’s. Explicitly, using local coordinates (, x, s, y) on X x X,
with 7, se R, x, y e R", the hypersurface through a point p =(z, x) is given
by

X,={(s,y):s=t+5(t x, y), yeR"}, (2.15)

where S: Rx R"x R” — R is smooth, S(¢, x, x)=0.

Let S ={(t, x,s, y)eXxX: t—5+8(t,x, y)=0}, S,=4,. Then S, <
S, S X x X with codim S, =d, =1, codim S, =d, +d, =n+ 1. “Rotational
curvature” is

d? ,S(t, x, x) is nondegenerate, ~ VxeX. (2.16)

This is coordinate invariant and, as noted in [P-S I], is equivalent with the
conditio1 that N*S be a local canonical graph near 4,«y. The singular
Radon t-ansform is defined by

Rf(,x)= | K(txx=y) [+ (5%, p). y) dy, (2.17)

K(t, x, -) being a smooth family of Calderéon—Zygmund kernels on R”. The
Schwart:; kernel of R is
Kg(t, x, 5, y)=06(t —s+ S(¢, x, y)) K(1, X, x — y). (2.18)

Since 6( ) is a conormal distribution for the origin on R', and a Calderén-
Zygmuni kernel is conormal for the origin in R”, it is natural to expect
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that K belongs to a product-type conormal space as described in
Section 1. In fact, choose coordinates (z’, z”, 2"} e RxR*xR**! on X x X
such that §, = {z'=0} and S,=(z"=2z"=0}. Clearly, there is an s,eR
such that Kze H®(Xx X) for all choices of K. To show that

loc

Kpe {(XxX; 8, S,), we must show that all the iterates V,--- V, Kpe H?
(X x X} as well, where cach ¥, e ¥7(S,, S,). By (L.11) it is enough to show
that D% DA, DY.((z') (z")° Kgp)e H® (X x X) for all &, 8,7, 8, p such that
lpl = o], ||+ |pl=lal+|Bl. But since K, is a dJ-function in z’, the
expression in question is zero if |p| = 1; thus we need only consider p =0,
and thus a=0. The question is then reduced to whether D% D,
((z"Y Kr)e H2, for all |8 = |B|. But this follows from (1.2) and the fact
that K is conormal for the diagonal.

To compute M and M’ for Kg, we use (1.24). Since R, away from the
diagonal, is a generalized Radon transform associated to the family X,
of hypersurfaces [Gu-S], it is a Fourier integral operator of order
~(dim X,}/2= —n/2 on N*S\N*S,. Hence M —n/2= —n/2, so M=0.
Microlocally away from N*S,, R is easily seen to be a pseudodifferential
operator of order 0, and thus M’ =0, putting K, I*°(Xx X S5, S,). The
L? boundedness of R then follows from (2.6).

To prove the boundedness of R on L?, 1 < p< oo, Phong and Stein use
an analytic family of operators, R,, y € C, for which R, is essentially R. Let
¢.,(-) be an analytic family of distributions on R with Fourier transform
smooth near 0 and in the classical symbol class S, ®7(R). They define

R, f(z¥)= [ K(t, %, x = y) (e + S(t, x, ) dy (219)

with K (t, x, x — y) = |x — y|72 $(lx — y| 72 (t — 5 + S(1, x, ¥)))
K(t, x, x — y).

For Re(y}>0, R, is an operator of Calderén—Zygmund type on X,
considered as a space of homogeneous type for a family of parabolic balls,
and so is bounded on L?, 1 <p< oo, while for Re(y)>3/4—n/2, it is
proved in [P-S 1] that R, is bounded on L?. Analytic interpolation is then
employed to establish the L?” boundedness of R,, and hence R.

We modify this analytic continuation slightly by first straightening out
S, in Xx X. Let (z/, z”, 2"} be the coordinates on X x X introduced above,
so that §,={z'=0}. Then Ki(z)=48(z'}Y®K(z",z";z"), where K is
conormal for z” =0 and thus has an oscillatory representation K(z;z")=
far € “alz; E") dE” with ae S°(X x X; R"). (By using a smooth cutoff to
restrict ourselves to a compact subset of X' x X, we can assume that g is
smooth at £” = 0.) This gives an explicit representation of K as an element
of I X x X; S,,S,):

Kel(2)=|

[ L2

} T N(EY a(z; E7) dE dE, {2.20)

580/89/1-15
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with 1-2¢e §*%X x X; R!, R"). Now define

’

z

K(z)=1z'|"¢, (Iz”|2> K(z;z"), yeC. (2.21)

First teking the partial Fourier transform in &', obtaining qfv(|z"12§’)
K(z;z"), and then taking the Fourier transform in £”, making use of the
classical type of ¢,, we get that

Ria)=] oo Oa e eyay ag, (222)

with a, = S RO 2ReO)(x % x; R, R"). Thus, by (2.6) we obtain the local L?
boundedness of the operator ﬁy with Schwartz Kernel K, for —n/2 <
Re(y) <0, improving slightly the result of Phong and Stein. On the other
hand, for Re(y) >0, R, is still a Calderon-Zygmund operator for a family
of balls satisfying the Vitali covering condition, since a diffeomorphism of
X x X fixing the diagonal pointwise does not change this condition for a
family of parabolic balls (cf. Nagel and Stein [N-S]). We have thus
recover¢d the result of Phong and Stein:

THeOREM 2.23. Let R be as in (2.17). Then

R: LY, (X)— L (X), t<p<oo.

3. THE FLowouT CASE AND OPERATORS WITH CONICAL SINGULARITIES

We now turn to proving boundedness of operators in the class 17/(4, A)
when 7 < (T*R™"\0)x (T*R"\0) is a flowout, using the composition
calculus described in Section 1. Interesting examples of such operators will
be furnithed by singular integral operators associated with variable families
of cones satisfying a certain tangency condition.

Let 2 = (T*R™"\0, w) be a smooth, codimension k conic submanifold,
1 <k <r, which is involutive:

the ideal of smooth functions vanishing on X is closed under
the Poisson bracket. (3.1)

Thus, T, ) 2“ < T, 2 is a k-plane for all (x, £) e Z, and, as described in
Section 2, the distribution {7, :\Z“} ;.5 is integrable, with integral
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submanifolds Z|, ., called the bicharacteristic leaves of X. The flowout of
2 is the canonical relation A=A = (T*R"\0) x (T*R"\0) given by

As={(x, & y,meZx2:(y,n)eZ ¢} (3.2)

Note that the projections =,, n,: 4 —» T*R"\0 have constant rank 2n— k.

THEOREM 3.3. Let AeI?'(R", R"; 4, A), with A=Ay as in (3.2).
Then A: H:__ (R")—> H}*(R") continuously, ¥se R, if

comp loc

k
max <p+5,p+l>< —50- (34)

Proof. Since I?(A)oIP'(4, A)cI?*+7"/(4, A), we may assume that
s0=0 and max(p+k/2, p+/)=0. We may further suppose that A4 is
properly supported. By the composition calculus of (1.39), the product
A*A lies in I7"7(4, 4), with p'=2p+k/2, I'=2]—k/2 still satisfying
max(p + k/2, p+1)=0. Furthermore, the principal symbol is ¢y,(4*4)=
loo(A4)|>=0. We now repeat in this setting a standard proof of the L2
boundedness of pseudodifferential operators, due to Hormander [H I].
(This method of proof was used in [U] for the operators considered in
Section 2; it is also implicit in the geometrical proof for cones in [G].)
Namely, we will construct a B such that

A*A+B*B=cI  mod I~ '2(A), (3.5)

for some ¢ > 0. By the result of Hérmander on L? boundedness of Fourier
integral operators associated with canonical relations that drop rank by at
most k [H I, p. 182], an element of 7-*(4) is bounded from L2, (R")
to L2 _(R"), so that (4.4) implies the L? boundedness of A.

For a fixed compact K< R”, we will consider 4 acting on distributions
supported in K. For me R, set

I,= @ 174, 4), (3.6)

p+i=m
p< —1/2

where the right hand side consists of finite sums, so that m>m’'=1_21 .
and (,,I,,=1""%*(4). We now consider two cases. If p+/=0, so that
[ 2 k/2, let ¢ be any real number greater than lim sup, _, .. |64(4)(x, t£)| for
all (x, &)e(T*R"\0)|x, and let by=(c*— |ay(A4)|?)V2 Then b,e S~ ¥k
(R*xR"; 4, %) and by the symbol calculus (1.3) there is an operator
Bye I7%*%2(4, A) with g4(B,) = b,. By (1.37) and (1.39),

B,=A*A+ B¥B,—c*Iel_,. (3.7)
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We now look for a finite sum B;=3", B, ;e [_, such that

A*A+ (By+ B,)*(Bo+ By)— el _,. (3.8)

We newd >, BfB,,+BfBy+Y,; B;",,»BLJ:E’L mod /_,; since each
B¥.B, ;eI _, and the principal symbol of the B, ; are real, by (1.39) we
may talie b, ,=300(Bo) ! ao(BL )€ ST (R"x R™; 4, X) with p,+1,= —1,
p:< —k/2. To each b, , there corresponds an operator B, ;e I”"(4, A) and,
letting .3, =Y, B, ,, (3.8) is satisfied. Continuing in this fashion, we may
find operators B;el_; such that

J ¥ 7 J
A*A+<Z Bi> (Z Bi>_czlel(j+1)’ v;. (3.9)

i=1 i=1

Asymptotically summing, there is a Bel, such that 4*4 + B*B—c*Ie
Ny, I ;=17"2(A), yielding the L* boundedness of 4.

On thle other hand, if (p, /) lies on the other edge p= —k/2, p+1<0,
then we simply take By,=1, c¢=1, and A*A+ B¥B,— [e[**K>2-k2
(4, A)c Iy, , - We now proceed to find operators B;e Iy, 1, j=1,2, .,
as abov:, so that (3.9) is satisfied; the remainder of the proof is the same.

QED.

The preceding theorem can be applied immediately to obtain estimates
for miciolocal powers of a real principal type operator. Let P(x, D) be a
properly supported mth order pseudodifferential operator of real principal
type, i.e, p..(x, &) real and Vp,,(x, £) #0 on X' = {(x, £): p,,(x, £)=0}. For
1eC, «efine P* as in [I] or [A-U]. In [A-U] it is shown that
Pt Jim - DR~ /2R +172 where 4 is the flowout of X. By Theorem 3.3,
with k:=1, P* will be smoothing of order so if max(m Re(4), (m—1)
Re(4)) < —sy. Thus, we have

Tueoem 3.10. (a) P* H:,__ — H:_"R(*) Re(1)=0.

comp loc
(b) P H:,, — Hi ™~ DRW Re(1)<0.

To gve a more substantial application of (3.3), for k=1, we now
formulate some diffeomorphism-invariant classes of singular integral
operato:s with conical singularities. Since all of the results are local,
we will continue to work in R” Fix an integer m, 2<m<n—1. Let
7% R"x S™~!x R— 8" ! be a C* map such that for each x e R", the map
S™" l3.p—>y(x,0,00eS""! is an embedding with image 7y ,cS" '
Define -: R"x S™ ! xR - R"” by

Wx, 0, r)=x+rx, o, r), (3.11)
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and let I',= {y(x, 0, 7): (w, r)€ S" "' xR}; then I', is a cone-like variety
in R” with vertex at x, and the I'.’s form a smooth family of such. Set

'={(x, y)eR"xR": yeTI,}. (3.12)

Near 4 g, I' is smooth and of dimension n + m.

Next consider a smooth family of pseudodifferential kernels supported
on the I'’s. Let Ke 2'(R"x S™~ ' x R) be a distribution which is smooth
in x and o, ie, WFK)c {(x, 0,1 Q,p)e T*R"xS" 'xR): ¢=0,
Q=0}. Then by a standard result on restrictions of distributions, each
K{x, w, - )€ 2'(R) is well defined. We will further assume that K has the
specific form

K(x,0,1)= e™a(x, 0, p) dp, (3.13)
ey

where ae S (R"x S 'xRx(R\0)). We have WFK)c{(x,ao,r,
&R, p): E=0, 2=0, r=0}. Define a distribution " € 2'(R" x R") by

(K, fH= K(x, o, r) f(x, y{(x, @, r)) dx dw dr,

R™x S"~x R
feCP(R"xR");, (3.14)

and define an operator with Schwartz kernel

Tf(x)=J~SMﬁ‘XR K{x, o, r) f(y(x, o, r)) dw dr, feCF(R™). (3.15)

We wish to find conditions on I" so that Te I(4, A) as in Theorem 3.3; to
do so, we use the characterizations of I(4, A) discussed in Section 1.
First, let

N*I"={(x,& p,m)e T*R"xR'NO: (x, p)e I'\4, (§, —1) L T, )T}
(3.16)

PrROPOSITION 3.17. WFA Y c dyegnw N*I'" and thus
WETf)c WF(f)U(N*I" o WE(f)).

Proof. Let g:R"xXS" 'xR-R"'xR" g(x, o, r)=(x,y(x, »,r)).
Then > is the pushforward of K by g, X = g, K, in the sense of [H I].
Thus, WF(X") = {(x, & y, n): dg*(x, o, r)(&, n) € WF(K), some (w, r)€
S"-1x R}. But dg(x, o, r)(X, 2, R) = (X, X+ RY(x, w, r) + 0(r)) =
dg*(x, o, r)(& n) = (E+n+0(r), O(r), (1-y°)). Hence, WF(X')c
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{(, & vom): x = p, &4+ = 0} U {(x, & yn): (x y) € T'\4,
(£,1) L Ty )T} € Alpuggn 0 N*T. Q.ED.

This s suggestive of (1.8), but in order to go further we need that N* /™
be contiined in a smooth Lagrangian that intersects 4 ;. cleanly and in
fact is :ontained in the flowout of a smooth, codimension 1 involutive
submanifold X' = T*R"\0. Thus, we at least need to assume

N*I"" extends smoothly past (T*(R"”x R")\0)| 4. (3.18)

ie, N*™ is smooth. We will denote N*I"" by A.

To better understand what condition (3.18) means in terms of the cones
I, consider the intersection 4 ;. N*I'". Without assuming (3.18), this
is of the form 4 for some closed conic set X< T*R™\0. By the proof
of (3.7), lim, o N*I"'nT¥. onm®xR")={(x,¢x,&): ¢ Lspan
{y°(x, @, 0), d,,7°(x, @, 0)(T,,S™ ')} }, so that

ZA(T¥RN\0)= | (span{o, T,7.})", (3.19)

TEYs

which i an (m — 1)-parameter union of (n — m)-planes in 7 *R". Thus, if 2
is smooth of codimension &, we must have 1 <k <m.

Let s consider the case k=1, which is the one of interest, in more
detail; it will be seen that (3.18) is actually a curvature condition. In light
of (3.1¢) it is natural to ask: Which (m — 1)-dimensional submanifolds
Sc S ! have the property that Q=1J,.s(span{a, T,S})* is a smooth
(n—1)-limensional submanifold of R™? Working locally on S near a
point ¢, let {e, ., e,,_,} and {®”, .., 0" '} be orthonormal frames for
TS and N*S, respectively, with respect to the standard metric on S"~".
Then w~e may locally parameterize Q by Sx(R"""\0)3(c, 0)—
hIyIn ,,‘,0 w’(c), where we are making the natural identification of the w’’s
as elerients of o*cR". This will be an immersion at (o, 8) iff
{V. (X, 0,0(c))};Z" are linearly independent modulo span{w"(c), ..,
w"~'(c)} = N*S; by the Gauss equation [K, p. 90], this will hold iff the
second fundamental form of S in S”~! is nonsingular in the direction
Y, 8,0’. Since we want this to hold for all 6 € R"~"™\0, we are naturally led
to the following condition on S: denoting the second fundamental form of
S at ¢ in the normal direction v by 4",

A':T,S— T,S is nonsingular, Yve N¥S\0,0€ S. (3.20)

The above discussion shows that € is immersed if (3.20) holds, with Q
being enbedded if we impose the additional global assumption

Q has no self-crossings. (3.21)
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Applying this to S=1v, as above, one sees that if each y, satisfies
(3.20) and (3.21), then X, given by (3.19), is smooth and codimension 1 in
T*R™"\0. Furthermore, it is straightforward to see that A= N*I"" is smooth
and intersects A ,.q. cleanly at 4.

Now, with (3.15) in mind, define S:Cg(R")— CF(R"xS™ !'xR)
by Sf(x, w, r)=f(y(x, w, r)). The Schwartz kernel of § is 6,, where
W={(x,w,r, y): y=x+r°x, w,r)}, which is smooth and codimension
n in R'xS" 'xRxR", and thus Sel ™4Cy), Cs=N*W'c
(T*(R"x S™ ' x R)\0) x (T*R™\0). Then we find the oscillatory integral
representation for the Schwartz kernel of S

Ky(x, 0,1, y)= j eMx =) Etmlxwn) Op(x o p EVdE  (3.21)
with be S°(R" x R" x §™~! x R x (R"\0)). Then we have

A (x, p)= [ elrrr e emnon (s, o, r, 0) blx, y, @, 1, &) dE do dr.
(322)

We now use the characterization (1.35) of elements in /(4, 4), to prove

THEOREM 3.23. Let T be as in (3.15) with the family of cones satisfying
(3.18). Then TeI~"#*™2(A, A) with A the diagonal and A=N*I"" as in
(3.16).

Using Theorem 3.23 and Theorem 3.3 we obtain

THEOREM 3.24. Let T be as in Theorem 3.23. Then
T:H: __(R")— H (R"), VseR,

comp loc

(5)
max _Tal‘l S—SO'

Proof of Theorem 3.23. Let P,, 1 <i<r, be pseudodifferential operators
of order 1 with principal symbol p, vanishing on 4’ and A'. Then

P = j I Bt SN (5 y £V, g &) ab dE do do dr + B, (3.25)

where

Hx, y,o,r,é,a)=ro+(x—p)-E+ryelx, w,r)- & (3.26)
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and B;e o/, o with
o, 5 ={peD'(R"xR"); uis of the form (3.22) with ae S* be S*}.
(3.27)

Using ttat p, vanishes on 4’ and the fact that (x;,— y;)e” =D, e, re? =
D, e* w: obtain by integrating by parts in the &, and ¢ variables

PXed, +d,,. (3.28)
Repeatir g this argument inductively we get
Pl“'PrKE%—r,rdl_&{p.frfl,r—l_‘— '“+‘My,0' (329)

Now let us consider the terms .o/, ; ; with u— j < —2. For elements in this
class we can intergrate out the o-variable and we obtain for any 4 € </,
jzpt+2,

— i, j
A= j o=y e on Loy x o ) dE do dr (3.30)

with ceC/7* 2R, S/(RxS" 'x(R"™\0)). We note that A’ is
paramet:rized by the phase function x(x, y; r/|¢], @/|&], &) with

X(X, y,r,w,§)=(x—y)-§+ry0(x,w,r)~§.

Now, we use the fact that the principal symbol vanishes on A’ to conclude
that P,+ is of the form (3.30) for some

ce C/7# (R, S/(Rx S"~ ' x R"\0)).

Summarizing the arguments above we have proved that
Pl"'P,Keﬂiz’u+2+d,1‘”+1+"’+%‘0. (331)

Now to define the oscillatory integrals in A4, , with || + |B] bounded we
have to integrate by parts at most a finite number of derivatives in the x, y
variables, proving that &/ ,+ .9/, ,,,+ --- + 4, is contained in a fixed
Sobalev space. This concludes the proof that T e I(4, A). To determine the
order we simply observe that T is a pseudodifferential operator of order u
on the d agonal and a Fourier integral operator of order —m/2 on A away
from the intersection. Q.ED.

4. ESTIMATES FOR RESTRICTED X-RAY TRANSFORMS

Operaors with conical singularities of the type considered in Section 3
arise naturally in integral geometry. Combining the results of Section 3
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with those of [G-U1, we obtain sharp local L? estimates for the restriction
of the X-ray transform to an admissible line (or, more generally, geodesic)
complex, €. (Wang [W] obtained global L” estimates for some line
complexes in R".) For a large number of general (inadmissible) complexes,
it will be shown that one actually obtains better estimates; this reflects the
fact that the Gelfand condition for admissibility forces the conormal bundle
of the point-line {or point-geodesic) relation to sit in T*M x T'*% in a
more singular fashion that it does in general.

To put this in context, let X and Y manifolds of dimension n, Cc
(T*X\0)x (T*Y\0) a canonical relation, and = and p the restrictions to
C of the projections from {(T*X\0)x (T*Y\0) onto T7*¥\0 and T*X\0,
respectively. Let Re I™(X, Y; C) be a Fourier integral operator. At a point
co € C, the differential dn(c,) is invertible (i.e., has rank 2n) iff dp(c,) is, in
which case ¢, has a neighborhood in C which is the graph of a canonical
transformation from 7*Y\0 to T*X\0. If drn and dp have rank 2n
everywhere, then C is a local canonical graph and R: H_, (Y}~ H} . "(X),
Vse R [H I]. On the other hand, by another result of Hormander, if dr
and dp drop rank by no more than 1 at each point of C, R: H(,, (Y)—
H; "~ Y*(X) (under the mild additional assumption that #: C - ¥ and
#: C— X are submersions.) In general, this result is sharp, as the case when
C is the flowout of a codimension 1 conic submanifold in 7*X\0 shows.
One expects, of course, that for a C which is not a local canonical graph
but for which = and p become singular in specific ways, there should be a
loss of s, derivatives, for some sharp value of 5y, 0 <54 <31. An example is
provided by the work of Melrose and Taylor [M-T] in scattering theory.
There, C’s for which 7 and p have at most a Whitney fold were introduced
and termed folding canonical relations. It was shown that, using canonical
transformation of T*X\0 and 7*Y\0, any such C can be conjugated to a
single normal form; on the operator level, any Re/I”(X, Y;C) can be
conjugated by elliptic Fourier integral operators to an Airy operator on R”
with symbol in S7'5 "¢, giving the estimate R: H,, (Y)— H;, "~ /5(X).
We now use the results of Section 3 to show that for a certain class of
canonical relations arising in integral geometry, somewhat more singular
than the folding canonical relations, there is a loss of § derivative. It should
be noted that there is no single normal form for the canonical relations
described below; there are aiready obstructions to equivalence at the
quartic terms in a formal power series calculation.

DerNiTioN 4.1 [G-U]. A fibered folding canonical relation Cc
(T*X\0)x (T*Y\0) is a canonical relation such that

(4.1a) at each point of C, = is either a local difffomorphism or a
Whitney fold; letting L < C denote the fold hypersurface;
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(4.15) at each point /,eL, dp drops rank simply by one and
ker(dp(l, )) = T}, L, so that p|, has one-dimensional fibers, and the map dp:
P-I(ﬁ(lo})_’Gznwi,zn(Tp(fg)T*X) defined by dp(l)=dp(/IY(T,C) is an
immersion;

4.12) n(LYycT*Y\0 is embedded, plc\, is 1—1, and p(L)c
T*X\0 :s embedded symplectic; and

(4.11) the fibers of p are the lifts by = of the Hamiltonian bicharac-
teristics of n(L).

(This :ype of canonical relation has also been considered by Guillemin
[Gu II] who pointed out that (4.1d) is in fact redundant.)

As is shown in [G-U], canonical relations of this type arise naturally in
integral reometry. If .# is the (2n — 2)-dimensional manifold of geodesics
on a riemanniom manifold (M, g) (when this makes sense) satisfying
certain assumptions and " < .# is a globally admissible geodesic complex
satisfying a curvature condition, {(2.23) in [G-U]), then the restricted
X-ray transform (integration over geodesics) &, f = (%, f)l¢ is injective
modulo 7% on distributions of compact support with appropriate restric-
tions on their wave front sets. An important ingredient in the proof is the
fact that #,¢e I™'*(%, M; C) with C a fibered folding canonical relation as
above. I addition, C'oCc Ay U Ay, c(T*M\0) x (T*M\0), where
Aysp is the diagonal and A4, is the flowout of n(L). The symbol of
Riyo R, s then computed, using only the fact that n*{wr+y,) is a folded
symplect ¢ form on C (for definitions and related material, see [G-U,
Gu II7), and is shown to be elliptic, allowing the construction of a relative
left-paraiaetrix for 4,.

THEOR M 4.2. Let (M, g) be an n-dimensional riemannian manifold, and €
be an adr tissible geodesic complex satisfying the assumptions of Theorem 2.7
of [G-U |, and with the projection {(x,y)e M x€:xey} — M proper. Then
for any -losed set K< T*M\Q contained in the support of the Crofton
symbol a1d with compact projection in M disjoint from the critical set of €,
there is a Fourier integral operator Be I™'*(A, ) such that

1B S <Conlf s [EH(MNEx s3> ~7,  (43)
and, for : = —1,
= B) Sl < 1B Sl s < Cel flres fEH- M)A E .
(4.4)

Proof. The operator T= %R, - R, can be described explicitly as follows.
For xe M, let €, = {ye¥: xey} be the geodesics of the complex that pass
through .¢; by assumption, we are working near a generic point x, so that
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%, is one-dimensional. Assume for the moment that ¥, is connected and
hence diffeomorphic to S'. Parameterizing the geodesics in %, by an
arc-length parameter vanishing at x, we obtain locally smooth maps °:
MxS'xR—-S8""! and y: MxS'xR— M as in Section 3. For some
smooth, nonvanishing density du,(x, , r) on S! xR,

) =] S o n) duo.n), (45)

s

which is of the form (3.15) with m=1 and ae S7 (M x §')x (R\0)). In
general, T is a sum of such operators. Thus, by the discussion in
Section 3, Tel %4, Ayy,), the smoothness of A= A,,, following from
the curvature assumption on ¥ alluded to above. By Theorem 3.3,
T: Hlypp(M) = H L2 (M), Vse R By duality #,: H_2(M) - LH(%).
Now recall that if y e .#, the tangent space T,.# can be identified with
J},J', the space of Jacobi vector fields along y~which are orthogonal to v.
Denoting this isomorphism by 7,.#35X < X(s)e]j, we also have an
identification between smooth vector fields on .# (or ) and smooth
families of Jacobi fields, which we denote by X(y) « X(y, s). Furthermore,

we have
X(Re )7 =R X (3, ) Ny), [eCP(M) (4.6)

if X is tangent to ¥. Hence, if P is an mth order partial differential operator
on ¥, there is a smooth family of mth order operators P(y, s) along the
geodesics of € such that

PR, )0) =R (P(y, ) N)3),  [eCT(M). (47)
For such a P, PR,: H7> (M) — L*(%) and thus, since P is arbitrary, we
have #,: HZ, *(M) - H™(¥), m=0, 1,2, ... By interpolation we obtain

(4.3) for seR, s> —1.

It is shown in [G-U] that T is elliptic on the support of the Crofton
symbol and there exists a Be I~ "*(4,,,) and a T 'eI%'(4, 4,,,) such
that 7~ 'oT=I—B on &%; by Theorem 3.3, T~': H} _(M)— H; (M),

Vse R. From this, since (4.3) implies that #.: H: __— H; " for s<0,

comp toc
it follows that the relative left-parametrix 7 '-#L for %, maps
L2, (%)~ H X4 (M), yielding (4.4). QED.

Remarks. (1) One expects (4.3) to hold for all seR.

{(2) The discrepancj between the norms on the left- and right-hand
sides of (4.4) arises for the same reason as the loss of 1 derivative in the
parametrix of an operator of real principal type. This is already reflected
in (3.10). '

2The authors recently proved this. (See “Composition of Some Singular Fourier Integra
Operators and Estimates for Restricted X-ray Transforms,” preprint.)
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We next show that the gain of  derivative in (4.3) is in fact sharp. Let
M =R? with the Euclidean metric, and ¥ = .# = M| ; be the line complex
consisting of all lines (light rays) on the light cone {x2=x?+ x3} and their
translates, i.e., € is all light rays in 2+ 1-dimensional Minkowski space.
Paramet:rize ¢ by R?x S', with

gf?gfx,y,9)=jﬂf(x+tcos9,y+tsin9,t)dt, fe&'(R?).  (48)

A simple calculation yields

2n
R, g(xy, Xz X3) = fo g(x, — x3008(0), x,— X, sin(0), 0) I, ge &' (%).
(4.9)

Let f=.9(x, — x3) ¢(x,, X, x;), where H is the Heaviside function and
peCy, p(0)#0. (We are trying to concentrate the Fourier transform of
/ along 2 line on the dual light cone.) Then fe H!2 °(R’), Ve>0. For
geCy(?),

(A f, 8> =Xf R &>

=f g(x, y,0) U @(x + x5 cos(8), y
{1 —cos(8))x,;<x
+ X, sin(0), x5) a’x3] dx dy db. (4.10)

Localizitg near x, y, § ~0, we see that near the origin %, f is smooth in
y and essentially homogeneous of degree 0 in (x, 8) with respect to the
dilations (x, 8) — (6°x, 80); thus the partial Fourier transform is roughly
homogeneous of degree —3 with respect to these dilations. From this a
routine calculation shows that %, fe H*~¢(%), Ve>0, but #,f¢
HY4(%).

Now I:t us turn to general geodesic complexes ¥ which do not satisfy
Gelfand’s admissibility criterion. For example, one may consider small
deformat ons, in the C* topology, of a fixed admissible complex, %,. Since
the canonical relation C,= N*Z;, where Z,< M x %, is the point-geodesic
relation (x,y):xey}, for €, is a fibered folding canonical relation, near
a point ¢ e C, there are local (nonhomogeneous) coordinates (x, &),
vanishing at ¢,, and local (noncanonical) coordinates on T*M and T*%,,
such that

2
rx0=(x6%)  (Whitney fola)
(4.11)
p(x, &)= (x", x,¢,, &) (fibered fold or blow-down).
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Perturbing %, into a general nearby complex ¢ corresponds to perturbing
the maps © and p in C*. Since Whitney folds are stable, a small perturba-
tion of n will still be a Whitney fold. On the other hand, a generic small
perturbation of p will be either a Whitney fold (S, , singularity), a simple
cusp (S, o singularity), or higher singularity (Golubitsky and Guillemin
[Go-Gu]). Suppose that the former holds; then the corresponding geodesic
complex % has a restricted X-ray transform #,el”"*(€), with C
belonging to the class of folding canonical relations, introduced by Melrose
and Taylor [M-T], near ¢,. It follows from the results of [M-T] that,
microlocally near ¢y, %, can be conjugated by elliptic zeroth order Fourier
integral operators to an Airy operator on R” proving

THEOREM 4.12. Let € c.# be a geodesic complex and z={(x,y)€
Mx%: xey}. If C=N*Z'<(T*¢\0)x (T*M x0) is a folding canonical
relation, then R,: H: . (M)— H}'?(€%), VseR.

comp

Explicit examples of families of geodesic complexes {%,},.r, With %,
admissible but €, satisfying the hypotheses of (4.12) for ¢ #0 are easily
constructed. For example, the line complex associated with the light cone
in R*> considered above can be perturbed as follows. Equip R* with
the Heisenberg group structure with Planck’s constant &:(x,, x5, x3)-
(V1> Y2, ¥3) = (X1 + ¥1, X2+ Y2, X3+ y3+e(x;y,— X, 4)), and let €, be
the line complex consisting of all light rays through (0, 0, 0) and their left-
translates. Then %, is admissible and %, : H},p, = Hior '/ by Theorem 4.2,
but for £#£0 small, ¥, has a canonical relation C, which is folding, and
R Hiomy— Hiot ' by (4.12).

comp
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