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INTRODUCTION 

There has been considerable interest in recent years in extending the 
theory ol Calderbn-Zygmund singular integrals to operators whose kernels 
are cont:entrated on (or singular along) submanifolds. Aside from the 
extensivt: work on Hilbert transforms along curves, Lz and Lp estimates 
have be:n proven for translation-invariant operators on nilpotent Lie 
groups jrhose convolution kernels are singular both at the group identity 
element and along a submanifold of dimension 32 by Geller and Stein 
[G-S], l&iller [Mu I, Mu II], Greenleaf [G], and Ricci and Stein [R-S], 
where in the last three references the submanifold is not necessarily smooth 
at the identity. Nontranslation”invariant operators associated with a 
smoothl:? varying family of submanifolds have been introduced and studied 
by Phollg and Stein [P-S I, P-S II]; they, however, assume that the 
submaniYolds are smooth and nondegenerate in the sense that the conormal 
bundle c f the singular support of the Schwartz kernel is locally the graph 
of a car onical transformation. This nondegeneracy condition they term 
“rotatior!aI curvature.” Uhimann [U] proved L’ estimates for a class of 
pseudod fferential operators with singular symbols associated with two 
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cleanly intersecting Lagrangians, using the symbolic calculus for such class 
of operators which gives, as a corollary, the L* estimates of Phong and 
Stein. 

The purpose of this paper is to simplify and unify the proofs of [P-S I, 
P-S II, U, G], and extend the results to certain nontranslation-invariant 
operators violating the smoothness and rotational curvature assumptions, 
examples of which arise naturally in integral geometry. We emphasize 
estimates on L* (or Sobolev spaces), but in fact the techniques handle 
easily the analytically continued operators which are used to prove Lp 
boundedness. 

In Section 1 we consider various spaces of distributions defined in terms 
of iterated regularity which are suflicient to deal with the operators of 
Phong and Stein and examine their representations as oscillatory integrals 
with product type symbols. In order to handle operators associated with 
cones and powers of real principal type operators, we also review the 
spaces of Fourier integral distributions associated with two cleanly inter- 
secting Lagrangians, introduced by Melrose and Uhlmann [M-U] and 
Guillemin and Uhlmann [Gu-U], and the composition calculus (under 
certain geometric assumptions) of Antoniano and Uhlmann [A-U]. The 
proof of the L* boundedness of the Phong-Stein operators, presented in 
Section 2, depends on the crucial observation of Melrose, in unpublished 
lecture notes [M I] which have influenced our treatment considerably, that 
such an operator can be decomposed, via a parabolic microlocal cutoff, 
into the sum of a pseudodifferential operator with symbol (or, more 
accurately, amplitude) of type (4, f) and a Fourier integral operator with 
amplitude of type ($, 4). The L* boundedness of the pseudodifferential 
operator follows immediately from the Calderon-Vaillancourt theorem; on 
the other hand, it can be shown that the composition of a Fourier integral 
operator, associated with a canonical graph and with amplitude of type 
(i, i), with its adjoint is a pseudodifferential operator of type (&, f), thereby 
yielding the L* boundedness of the Fourier integral operator. This result on 
compositions is essentially already in Beals [B], but not quite in the form 
we need, since we are interested in Fourier integral operators given by 
general phase functions and not just a generating function of the canonical 
transformation. For the sake of completeness we provide a proof, which 
follows closely the usual analysis of the composition of Fourier integral 
operators, the main novelty being that Hbrmander’s theorem on the 
invariance of classes of oscillatory integrals hold for type (4, 4). 

It should be noted that the decomposition of a singular Radon transform 
into two pieces, T= T, + T2, with T, and Tz T2* both “classical” singular 
integral operators and hence bounded on L*, already occurs in the early 
work of Nagel, Stein, and Wainger [N-S-W] on Hilbert transforms along 
variable curves in the plane. 
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Singular Radon transforms on a manifold X belong to the class of 
Fourier integral operators associated with two cleanly intersecting 
Lagraqians, Zp”(d, /1), with A being the diagonal in T*Xx T*X and 
n = N* Z’, where Z is the support of the Schwartz kernel. (Elements of 
Zp*‘(A, / ) are sometimes referred to as pseudodifferential operators with 
singular symbols, since microlocally on A\A they are pseudodifferential 
operato-s whose principal symbols are singular at A n A.) One can weaken 
the smoothness assumption on 2 at the diagonal of Xx X and still have /i 
be a smooth Lagrangian; this happens, for example, for variable families of 
cones s: tisfying a curvature condition. The decomposition argument above 
is not ,tvailable if n is not a canonical graph, since /1’ 0 /1 is not the 
diagonal (and may not even be smooth). However, there is a situation of 
maximum degeneracy, namely when ,4 is the flowout of an involutive 
(coisotr)pic) submanifold of T*X\O, for which there is a composition 
calculus for Zpx’(A, A), due to Antoniano and Uhlmann [A-U]. Using this 
calculus, we establish in Section 3 the L2 boundedness of elements of 
Zp”(d, 1 ), n a flowout, and then formulate classes of singular Radon 
transforms associated with variable families of cones to which this applies. 
The flo~out condition is automatic in the translation-invariant case; it 
should oe pointed out that the “geometric” proof of the boundedness in 
[G] is -eally a special case of the argument here (in disguise). The results 
here arc: in some sense complementary to those of [R-S, Mu I, Mu II] 
mentiored above, since for a translation-invariant operator on a non- 
commuiative nilpotent group, n is usually not a flowout. 

Final y, in Section 4 we apply the results of Section 3, in combination 
with thc)se of Greenleaf and Uhlmann [G-U], to obtain some estimates 
in integral geometry. If (M, g) is an n-dimensional riemannian manifold, 
we may (at least locally) form the (2n - 2)-dimensional manifold A of 
geodesics on A4 and define the X-ray transform 

An n-dimensional submanifold Y? c J& is called a geodesic complex. 
Followi rg Gelfand, one can form the restricted X-ray transform 
%‘@f= :&?f IW and ask to what extent gWf determines J In [G-U], it was 
shown that if %? satisfies a generalization of Gelfand’s admissibility 
criteriorl, .%* has a relative left parametrix constructed from a relative 
paramel rix for 91?tpoBW. In fact, subject to a curvature hypothesis, 
$I?,& 0 9% E Zp3’(A, A), with Gelfand’s criterion implying that n is a flowout. 
The reslilts of Section 3 can then be used to derive Sobolev space estimates 
for &; in particular, there is a loss of $ derivative, reflecting the particular 
way ths t the conormal bundle of the point-geodesic relation fails to be a 



SINGULAR RADON TRANSFORMS 205 

canonical graph. (There are closely related results in Guillemin [Gu II], 
where, moreover, ,4 need not be smooth.) On the other hand, for “many” 
complexes in general position, which do not satisfy Gelfand’s criterion, .%?)u 
satisfies a better estimate: there is a loss of only i derivative, which follows 
from results of Meh-ose and Taylor [M-T] on folding canonical relations. 

Phong and Stein have informed us that they have reproven their 
estimates, using a parabolic cutoff that seems to be different from ours.’ 
L* estimates for some restricted X-ray transforms in IR” are in Wang [WI. 

We thank R. Melrose for allowing us to make use of the material in 
[M I, M II] and for helpful discussions. The first author thanks the 
Mathematical Sciences Research Institute, where some of this work was 
done, for its hospitality and support. 

1. OPERATOR CLASSES 

In this section we shall review the pertinent facts from the theory of 
product-type conormal distributions and the associated distributions that 
will be used in this paper. First we recall the definition of a classical 
conormal distribution [H II, p. 41. 

DEFINITION 1.1. Let X be a C” manifold of dimension n, and S c X a 
smooth submanifold. The space of conormal distributions on X with 
respect to S of order m, denoted Zm(X; S), is the set of all distributions 
u E 9’(X) such that 

v, ... v,uEHI,,“-“‘43=yX), Vk>O, (1.2) 

where the Vi’s are C” vector fields on X which are tangent to S, and 
H:;,“(X) is the usual Besov space. Since we will not be using this definition 
and its generalizations to find the exact order of distributions, we will work 
with Sobolev spaces rather than Besov spaces. 

When we have two submanifolds (or subvarieties) S,, S, s X, we can 
define a space of conormal distributions associated with S, u S2 allowing 
interaction at S, n S,, under the assumption that the conormal bundles 
N*SI, N*S, are smooth and intersect cleanly in T*X. This space was 
defined using oscillatory integrals with singular symbols in [M-U, Gu-U]; 
we shall review this approach below, but first we wish to consider the case 
where S, and S, are smooth and intersect cleanly. We shall follow here the 
notes of Melrose [M-U] and define this space of product-type conormal 
distributions using iterated regularity, in analogy with (1.1). Recall 

DEFINITION 1.3. S,, S2 c X intersect cleanly if S, n S2 is smooth and 
T(S, n S,) = TS, n TS2. 

1 This has appeared. See [P-S III]. 
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For s mplicity, we shall restrict our attention to nested submanifolds 

s2 E Sl G x, (1.4) 

which i; relevant to the Phong-Stein operators. Of course, in this case 
S, and S2 intersect cleanly. 

DEFINITION 1.5. Let V(S,, S,) be the space of smooth vector fields on 
X which are tangent to both S, and &. 

(Note that clean intersection is exactly the right condition to make 
“tangen to both S, and S2)) unambiguous.) 

DEFI~ ITION 1.6. The space of product-type conormal distributions with 
respect :o S1, &, denoted by Z(X; Sr, S,), is the set of all u E g’(X) such 
that 

v, ... Vk 24 E em for some s0 E R and Vk 2 0 (1.7) 

with VjviY(S1, S,), 1 <j<k. 

It is straightforward to prove 

PROPOSITION 1.8. If u E Z(X; S1, S,), then WF(u) E N*Sr u N*S,. 
MoreovG’r, away from ST, u E Z(X; S,\S,). 

We will assume from now on that S, is of codimension d, and S, is of 
codimersion d, + dZ. Introduce local coordinates near a point of S2 such 
that 

s1= 1 Xl = ... = xd,=ol 

sz= (x1= ... =xd,+d2=o}, 
(1.9) 

and delete points in R” by (x’, x”, x”‘), with x’ = (xi, . . . . xd,), x” = 
(x d,+l? ..Y xd, +&), X”’ = (xd, +&+ 1, . . . . X,); let (t’, t”, t”‘) be the dual 
variables. We now find a local basis for Ilr(S, , S,), and thus for the ring 

of differential operators generated by V(S, , S,). 

PROPOSITION 1.10. Zf uELB’(R”) and S,G S, G IR” are as in (1.9), then 
u E Z(W; S1, S,) iff there exists an so E IF! such that 

0;s D$ 3;.,((~‘)~ (x”)’ u) E H;&(W), 

V n!ultiindices c1, j3, y, 6, p such that lpl > 1~1, 161 + lpl 2 1~1 + IPI. (1.11) 

PrOOJ: It is enough to show that the differential operators in (1.11) 
form a ocal basis for the ring generated by V(S,, S,). This will be proven 
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by induction on the order of the operator. First, we claim that the vector 
fields 

DXk for k>d,+d,; Xi&, for i<d, ifj<d, 

and (1.12) 
i<d,+d, if d,<j<d,+d2 

give a basis for V(S,, S,) (over P(W)). To see this, note that if 
v = CL1 ai(X) D, + CJ’i>F+l bj(x) D, + C;=d,+d2+l c~(x) DxkT with 
ai, b,, ck E C”(W), then V tangent to S, implies that the ai’s must vanish 
at x’=O, while V tangent to S2 means that the ai’s and bj’s must vanish 
at (x’, x”) = 0. 

Now, suppose by induction that for some Z, the operators in (1.11) with 
IQI + IPI + IyI <l span the C”(R”)-submodule of the ring generated by 
%‘“(S,, S,) consisting of those operators of order ~1. If Vj~ Y(S,, S,), 
1 <j<l+ 1, then 

I’, . . . I’,, 1 = c a$; D$ D$ D3;w((x’)” (xl’)’ q&Dx,) 

+ 1 b;;; 0;s D$ D;w ( (x’)~ (x”)’ dk D,J (1.13) 

where the sum extends over 1x1+ IflI + IyI < 1, with the other indices limited 
as in (1.11) and ( 1.12), and the a’s and 4’s are C” functions. Ccnnmuting 
the D, , j < d,, and D,., k > d, + dZ, past the x’, x”, 4 factors then gives a 
sum of terms as in (l.ll), with 1~1 + IpI + IyI <I+ 1. 1 

The above can now be used to give an alternate characterization of 
Z(W; S,, S,), with S1 and S, as in (1.9), in terms of oscillatory integrals 
with symbol-valued symbols. 

DEFINITION 1.14. Let (c’, <“) be coordinates on lRdl* x [w@. For m E Z+, 
M, M’ E R, the space of symbol-values symbols of order M, M’ on R” x 
I@ x W, denoted by S”‘M’(Rm; Rdl, Rd2), is the space of smooth functions 
a(x, [‘, 5”) satisfying, for every compact Kc R”, 

sup lD”;.D$Dy a(x 5’ 5”)l < C x )T k,r,&y(<‘, t”)“-‘or’ (t”)“‘-‘P’, 
x E K 

V multiindices CI, /?. (1.15) 

Here, (~~,~“)=(1+~5~~2+14n12)1’2, (~“)=(1+~~“~2)1/2. 
Using standard integration by parts arguments (cf. [Hl ] ), to each 

aE S”sM’ (R”; TX“‘, Rd2) we can, if m 2 d, + dZ, associate an I, E Q’( W) 
defined by the oscillatory integral 

These give us the second characterization of I(W; S1, S,). 
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PROPOSITION 1.17. Let u~Z(lw”; S,, S,), with S, and S, as in (1.9). Then 
u=Z, w’th aES”gM’ (R”; Rid’, Rdz) for some M, M’. 

Proof We can assume without loss of generality that u E &“(I?‘) n 
the x’. x” Z(R”; S,, S,). Taking the partial Fourier transform of u in 

variable ; and using (1.1 1 ), we obtain that 

(5’)” ((“)P D;.qJp(~‘, <“, x”‘) 
E ,52( ~4’ x [w&+ x [w” - 4 - 4; (<‘, [” )so &’ &” dx”’ 1 (1.18) 

for son.e QEIW, when IpI 3 (al, 161 + IpI > Ial + I/II. By the Sobolev 
embeddng theorem, we get that a(x, l’, 5”) = ti(l’, t”, x”‘) satisfies (1.15) 
for some: M, M’ E R. 1 

DEFINITION 1.19. For M, M’E R, Si and S2 as in (1.9), ZM3M’(lRn; 
S,, S,) s the space of oscillatory integrals of the form (1.16) where Si, S, 
are give 1 locally by (1.9) with a E S”,M’( R”; Rdl, Rd2). 

We nl:xt show that this definition is actually coordinate free. 

PROPOSITION 1.20. The space Z”‘M’(lRn; S,, S,), with S,, S2 as in (1.4), 
is indepr ndent (modulo Cm(W)) of the choice of local coordinates. 

Proof Suppose that u is of the form (1.16) with the integral absolutely 
convergent. A change of local coordinates that preserves (1.9) necessarily 
has 

xi= ? &j(y) Yj, 1 <i<d, 
j=l 

4 + 4 

xi= C B,j(Y) Yj3 d,<i<d,+d, 
j=l 

with A, B, smooth. Inserting this in (1.16) and introducting 

si= ? A,(,+ “id2 Bjirj, 1 di<d,, 
j=l j=dl+l 

4 + 4 
P- Yj- C BjitjT 

j=dl+l 

d,<i<d,+d,, 

one obt;tins the new representation 

u(y)=Se’(“‘..~“+‘...Y”‘b(y, E’, z”),‘&“, (1.21) 
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with b( y, fi’, 2”) = a(x(y), &j’(y, E’, Z”), {“(y, E’, E”)) times the Jacobian 
of the change of variable (T’, c”) -+ (Z’, 3”). It is easy to see that 
b E S”,M’(Rn; IPi, !P). For general values of M, M’, for which the integral 
is divergent, one as usual integrates by parts to reduce the calculation to 
the convergent case. 1 

DEFINITION 1.22. Let S2 G S, z X be nested manifolds with dim X= n 
and S,, SZ of ~odimensions d,, dr + d2 in X, respectively. Then 
I”xM’(X* S,, S,) is the space of locally finite sums of distributions of the 
form (1.;6) where S, , S, are given locally by (1.9). 

Now let X be as above and let A c: T*X\O be a conic Lagrangian 
manifold. Let I”(X; A) be the space of Fourier integral distributions on X 
associated with A [H I]; an element of P(X; A) is given as a locally finite 
sum of expressions 

4x)= j ei@(x*o)a(x, 0) d0, (1.23) 
RN 

where the phase function B; parameterizes A and a is a symbol of order 
m - N/2 + n/4. By slight abuse of notation, we will say that a u E G@‘(X) is 
in P(X; A) if for each A0 E A there is a microlocalization of u near A0 which 
belongs to P(X; .4). When we wish to emphasize the symbol class of which 
a(x, 0) in (1.23) belongs, we will write Z:,(X; A); otherwise, p = 1, 6 = 0 is 
understood. 

PROPOSITION 1.24. Let u E IM5M’(X; S,, S,) as in (1.19). Then UE 
I~~+“‘+(d’+d2)‘2-n/4(X; N*S2\N*S,) and UEZ;M~~“~‘*-‘~~(X; N*S1\N*S,). 

Proof. In local coordinates with S, and S2 as in (1.9), we have the 
representation (1.16) with a E S”pM’ (IP; I@, R4). In these coordinates, 
N*Sr = {(O, x“, x”‘; (I, 0,O): X”E Rdz, X”E RnPd1-d2 and 5’~ Rdjf and 
N*S2= ((O,O, x”‘; r’, c”, 0): x”‘EIY-~‘-~~, <‘E tRdi and <“~l??‘t). Let 
Z= N*Sr n N*S,; then C= ((0, 0, x”‘; t’, 0, 0): X”‘E Rn.-dl-rlz, [‘E lRdT}. 
On N*S,\E, we have x” #O and repeated integration by parts in the 5” 
variable shows that we can lower the order of a arbitrarily in the c” 
variable and so obtain (modulo C”) the microlocal representation 

u = s eiX’, 5’b(x, 5’) dt’, b E S&( R” x !J@). (1.25) 

Thus, UEZ~~+~~‘*-“‘~(X; N*S,\N*S,). On the other hand, on N*S,\Z; we 
have rrf#b and so ~&S~~~‘(~~X~~~+~~) there by (1.15), yielding 
U~Zi~~+~‘+fdl+dZ)!2~~/4(X; N*S2\N*S,). I 
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For snore general classes of product-type conormal distributions, the 
iterated regularity definition using vector fields in (1.6) is not applicable. 
For example, in treating singular integral operators with conical 
singular.ties in Section 3, we will deal with the case that S1 has a conical 
singular ty; it may happen that V”(S,, S,) is empty. Also, more generally, 
we may associate classes of distributions to intersecting Lagrangians which 
are not necessarily conormal bundles. We now describe the spaces of 
distributions associated with pairs of Lagrangians, defined in [M-U, 
Gu-U], for a particular case, namely when one of the Lagrangians is the 
diagona in 7’*Xx T*X. These are sometimes referred to as pseudo- 
differential operators with singular symbols. 

Let 2 be of dimension n and d c (T*X\O) x (T*X\O) the diagonal; d’ 
is Lagrangian for the product sympIectic form T~:o~*~+R:o~*~, and d’ 
contains the wave front set of a pseudodifferential operator on X. Let 
n c (T*X\O) x (T*X\Of be another conic Lagrangian. We assume that 

A and n intersect cleanly, (1.26) 

Let ..Y = A n n and denote the codimension of Z: in A (and A) by k, 1 d k ,< 
2n - 1. (:onsider a model case where X= I&!“, d” = ((x, 5; X, 5)) and 

J={(x,t;w?): x” = y”, y = q’ =I 0, <” = q”). (1.27) 

Here w(: are denoting a point of R” by (x’, X”)E Rk x Rnmk. Then C= 
(x’ = y’. &-II = y”, 5’ = q’ = 0, <” = q”). 

DEFINITION 1.28. For m E Z + and p, ZE fw, the space of product-type 
symbols denoted Sp,‘(Rm; R”, !Rk) is the set of all smooth functions on 
R” x R” x I@ such that for all Kc R” compact, 

Pp:~:4x, 5, o)l <C&(1+ IQ)P-‘a’(i + loI)‘-‘P’. (1.29) 

DEFINITION 1.30. The class of operators ZP~‘([w” x W”; d, /?) consists of 
those m,tppings A : S(R’) + I’ with Schwartz kernels 

i((x’-u’-S)-r’+(X”-YX).5”+s-“)a(x, y,s, ,J&&&&, (1.31) 

with aE SP--n/2+k/2,f-k;2(IWZn+k; [WE, Rk), 

We will identify elements of Zp” with their Schwartz kernels without 
comment. For A EZ~“(OY x R”; d”, ;?), it is straightforward to see that the 
analogucs of (1.8) and (1.24) hold (see [Gu-U)): 

WF(A)’ Ed”Uji and A E zP+‘(lw x IR”; d”\C), A E zqw x 88”; /&q. 
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From the proof, one obtains the microlocal representation of A on d”\C 
(modulo terms of lower order) 

K,(x, y) = j e’(“- “).54x, Y, 0, 5, 4’) 4 

which, given the product nature of a, exhibits A as a pseudodifferential 
operator with singular symbol. The following results, proved in [Gu-U], 
allow the definition of ZP)‘(Xx X; A, A) in general. 

PROPOSITION 1.32. Let 2: T*(R” x W)\O + T*(R” x W)\O be a cano- 
nical transformation such that i(4”) c d”, f(ii)c 2, and let F be a Fourier 
integral operator of order 0 associated with 2. Then F(P’(R” x R”; d”, 2)) c 
zq R” x R”; 2, 2). 

PROPOSITION 1.33. Given A, A c (T*X\O) x (T*X\O) intersecting 
cleanly in codimension k, there exists a canonical transformation x: 
(T*X\O)x (T*X\O)+ (T*R”\O)x (T*W\O) such that x(A)g& x(A)~;i 
(for the same k). 

Thus, one defines Zpy’(Xx X; A, A) to be those operators whose Schwartz 
kernels are locally finite sums of F(K,)‘s, A E Zp~‘(R” x R”; d”, 3) and F 
associated with x as in (1.33). 

We can now give an iterated regularity characterization of ZP,‘(Xx X; 
A, A) as in (1.6) but now using first order pseudodifferential operators 
instead of vector fields. Note first that by representing the Schwartz kernel 
u = K,(x, y) of an A E P’(R” x IR”; d”, 2) as in (1.31), we may obtain an 
oscillatory integral representation of u as an element of Z’l’(R” x IR”; 
S,, S,), where S, = {(x’, x”, y’, y”): x” = y”} and S, = A,. = {(x’, x”, 
y’, y”): x’ = y’, x” = y”}. To avoid confusing notation, introduce 
coordinates z’ = x” - y” E R”- k, z” = x’ - y’ E lRk, and z”’ = x + y E 58” on 
R” x R”. Thus, d, =n- k, d,= k. We have 

u(z) = 1 e i(z’.<‘+z”.tm’, eis~(DpS”)a(x, y, s, (c”, <‘), a) ds da 
> 

d[’ dt”. 

(1.34) 

The inner integral may be evaluated using stationary phase and the symbol 
estimates (1.29); the result, b(x, y, t’, t”), lies in P,“‘(Rn x IR”; S,, S,) for 
A4 = p - n/2 + k/2, M’ = I - k/2. Thus, Zp~‘(R” x R”; d”, ;?) = ZP-*12 + k12*‘~ ki2 
(R” x R”; S1, S,). Since the latter space is characterized by iterated 
regularity via vector fields tangent to S, and S2 as in (1.6), so is the former. 
Now, if F is a Fourier integral operator of order zero associated with a 1 
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as in (1.33), and VE Y(S,, S,), then VoF-’ is a first-order pseudo- 
differenial operator P on Xx X which is characteristic for A u ,4, i.e., 
CJ~~~“(P) = 0 on d u A. We thus are lead to 

PROPXITION 1.35. Zf u E 9’(X x X) and there exists an so E iw such that 

Pl ~*~P,uEH’~,(XxX), all k 30, (1.36) 

for all jirst order P, with ~~~~~~~~~ = 0 on A u A, then u E Zp9’(X x X; A, A) 
for sorn(x p, 1 E Iw. 

For the results of Sections 3 and 4, we shall also need the symbol 
calculus for Zp,‘(Xx X; A, A), and a composition calculus assuming that A 
satisfies a certain geometric condition. We will describe these briefly; the 
reader ii referred to [M-U, Gu-U] for more details. 

If u E Ip5’( X x X; A, /i), by the above discussion u E Zp+ ‘( X x X, A\C) and 
u E Zp(X x X; A\x); thus, by the standard theory of Fourier integral 
operato s, u has invariantly defined symbols go(u) and a,(u) on A\C and 
A\C, respectively. Because of the product-type estimates satisfied by the 
amplitucle used to define u, r~,Ju) has a singularity at ,J5’, and in fact a,,(u) 
is conormal for C on A, belonging to the space of sections R’pk’2(SZ,@ L,; 
A, C) singular of order I- k/2 defined in [Gu-U, p. 2601. The space 
Sp,‘(Xx X; A, C) is defined to be those elements of Ripk12 which are 
homoge leous of degree p + I+ n/2. If u E Zp,‘(X x X; A, A), then a,Ju) E 
Spx’(X x X; A. C), and the symbol calculus is summarized by 

PROP~ITION 1.37. The following sequence is exact: 

O-*Zp~‘-l(XxX;A,A)+Z~-‘~‘(XxX;A,A) 

+Zp”(Xx X; A, A) 2 Spv’(X x X; A, 2) -+ 0. 

If A c: (T*X\O) x (T*X\O) is a canonical relation, i.e., is a conic 
Lagrang an for the difference symplectic form n:w,,,-~:~~*~, we 
denote t‘le class of operators with Schwartz kernels in Zp9’(Xx X; A, A’) by 
Zp,‘(A, A ). From [Gu-U, Proposition 6.21 we have that n,ZP,‘(A, A) = 
Zp(A), the space of classical Fourier integral operators of order p 
associated with A, and np Zp-‘(A, A) = CT(X x X), the space of smoothing 
operator;. In order to obtain a composition calculus for Zpvf(A, A) we need 
to restrict A so that new wave front set does not occur in the composition. 
Recall tltat a submanifold Zc T*X\O is involutive (or coisotropic) if 
Z= {(x, 5): pi(x, {) = 0, 1 < i < k}, with the p;s defining functions for Z 
that are in involution at Z: all the Poisson brackets (pi, p,} vanish on r. 
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r is then foliated by the integrable distribution consisting of the span of the 
Hp,‘s. The flowout of r is 

(1.38) 

A, is a canonical relation (if f is conic). For A of the form ,4,, the 
composition calculus is summarized by 

PROPOSITION 1.39. if A = A r for a conic, involutive TC T* X\O of 
codimension k, then Ip,‘(d, A) 0 Ip’.“(d, A) c I*+p’+k12.1-t”-kk/2(A, A), and 
a&4 0 B) = a&4). a()(@. 

2. THE CANONICAL GRAPH CASE 

In this section we prove local L2 estimates for operators whose Schwartz 
kernels lie in the class I”,M’ (Xx X; S,, S,), where S, is the diagonal of a 
smooth ~-dimensional manifold X, and S, 3 S, is smooth and such that 
N*S\ is a (local) canonical graph. We then show that the singular Radon 
transforms of Phong and Stein [P-S I, P-S II] belong to this class, as well 
as the operators arising in the analytic-interpolation proof of Lp estimates. 
The L2 estimates for these operators were previously reproven by Uhlmann 
[U] using the symbolic calculus (1.37) developed in [Gu-U]. Here, we 
give a simpler proof, making use of an observation of Melrose [M I] that 
elements of Z(X x X, Si , S,) can be decomposed into a sum of two classical 
Fourier integral distributions, conormal for S, and Sz, respectively, but 
with amplitudes of type (f, 4). The idea of a parabolic cutoff goes back to 
Boutet de Monvel [Bo]; in this context, it was used by Guillemin [Gu I] 
in defining singular symbols. 

PROPOSITION 2.1 (Melrose). Let S, c Si c Xx X, with dim X= n, codim 
S,=d,, andcodimS,=d,+dZ. Then, if-d,<M’<O, 

z”‘M’(XX x; s,, S,) c z~;;:,,,(xx x; S,) + zf;‘;:,/,xx x; S,), 

where M” = M + M’/2 + (1/2)(d, + d2 - n). 

Proof. Recall that for SC Xx A’, 1:,(Xx X; S) is just different nota- 
tion for Hormander’s class ZF,(Xx A’; N*S). In local coordinates, 
ziEPM (XxX; S,, S,) can be represented as in (1.16): 
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with a(:S”yM’ (R” x R”; U@, I@), where (x’, x”, A!“) are coordinates on 
XxXsltch that Sr={x’=O}, S,={n’=x”=O}. 

Pick t cutoff function cp E C,“(R), cp = 1 near 0, and set 

u1 = 

I 

ei(.x’.(‘+.Y”.t”) K’>’ 

cp ( ) 

~ a(x, t’, r”) dt’ d<” 
cc, C’> 

(2.2) 

and u2 =u--u,. On the support of (l-~p)((~“)~/(~‘,~“)), we have 
((“) 2 7(@‘, cy)“2 and the symbol estimate (1.15) becomes 

ld;af.(3y((l -~)a)/ <c(l’, ~“)“+M”2~‘11-‘8i’2, x (2.3) 

which is of type ($, 0). Of course, this condition is not coordinate invariant 
and so ‘ve get that u2 has a representation as a conormal distribution for 
S, with an amplitude of .order M+ M’/2 and type (1, i). Thus, 
u2 E zq*i ;“’ + (4 + h)P - n/2(x x x; S,). 

On tise other hand, write U, as a conormal distribution for S, with 
amplitucle 

b(x, 5’) = jRd, e’““~“‘cp (&) a(x, <‘, i;“) d<“. (2.4) 
7 

Then aF:dj;b(x, r’) will be a sum of terms, the leading one of which will be 

e a”;:a(x, g’, 5”) d[“. (2.5) 

Noting that the integral is over a ball of radius <c( t’)l’* in iRd2 
and simply estimating the integrand by its absolute value via (1.15), 
we may dominate the integral by c((‘)“‘-~~‘~ J1<5’>“2 r”‘fly”J+“P1 dr d 
c(l’)“- M”2+d2’2-‘ol”+Jy”“2 if M’+ d, > 0. The other terms in 8$8:&x, 5’) 
are handled similarly; thus, u1 has a representation as a conormal 
distribut on for S1 with amplitude of order M+ AI’/2 + d2/2 and type 
($, $1, ar d so u E 11,2,1,2 M-+M’/*+d~/2+d2/*-~/2(~~~; s,). 1 

When S, is the diagonal A of X in Xx X, we have written an element of 
Z”.M’(X K X; S,, A) as a sum of a pseudodifferential operator of type (i, i) 
and a Fc urier integral operator associated with the Lagrangian N*S, with 
amplitude of type ( f , 5). The Calderon-Vaillancourt theorem will allow us 
to prove the main result of this section. 

THEORZM 2.6. Let A G S, G X with dim X= n, codim S, = d. Suppose 
N*S; c (T*X\O) x (T*X\O) and is a local canonical graph. Then, lj” 
AEZ~,~ (XxX; S,, A), then 

A : Gn,W) --) GxW) 

ifmax(k~‘,M+M’/2)<0 andM’>d-n. 
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Proof. Here, d, = d, d2 =n-d, and d, + d, =n. As noted above, by 
(2.1), A can be written as a sum of a Fourier integral operator A, of order 
M + M/2 and type (4, i), and a pseudodifferential operator of order 
M+ A4’/2 and type (i, i). The Calderon-Vaillancourt theorem [C-V] 
applies directly to the latter to give L* boundedness. The boundedness of 
A, is reduced to the Calderon-Vaillancourt theorem by the result that the 
composition of a Fourier integral operator, associated with a canonical 
graph and having amplitude of type (I, i), with its adjoint is a pseudo- 
differential operator of type (4, 4). This is a special case of a theorem of 
Beals [B, Theorem 5.41 for general weights, but the proof in [B] is 
actually only for “canonical operators,” where the phase function is a 
generating function of the canonical transformation. Since we need the 
result for Fourier integral operators with general phase functions, as in 
(2.8), we present the (somewhat different) proof in full. 

PROPOSITION 2.7. Let XC R” be open and A, be a properly supported 
operator on X with Schwartz kernel 

K& y)=S,me i41(x,y,B)al(x, y, 0) de (2.8) 

with q4, (x, y, 0) a nondegenerate phase function parameterizing a Lagrangian 
A, such that A; is a canonical graph. Let a, E S’;;Z,~~~‘*(X x X; KY). Then, 
modulo smoothing operators, A, AT is a pseudodifferential operator of order 
0 and type i, 1. 

Proof: We follow closely the treatment of composition of Fourier 
integral operators in Duistermaat [D, pp. 57-601; this requires only 
checking the dependence of the proof on the type of the symbol. 

First note that A,= A: is again a Fourier integral operator with 
amplitude of type $, f with representation 

A2f(x) = [ e-i4(Y~x*e)iil( y, X, e)f(y) de dy. (2.9) 

Let a2(x, y, 0) = ti,(y, x, 0) and &(x, y, 0) = -dl( y, x, 0); & parameterizes 
A;‘. As in [D], we write the Schwartz kernel of A, 0 A: = A, 0 A2 as an 
oscillatory integral 

K,, c A2(~, z) = s ei~~~(‘~Y~e)+~*(Y~z~(r))al(x, y, t9) a2( y, z, a) de do dy. (2.10) 

We introduce cutoff functions x, , x2, supported where Jb( Gclf3\, 101 ~clal, 
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respecti lely; on their supports we have Id(,,&4 + d2)l B WL 
Id,, Oj(#l + &)I 2 c’ IO/, respectively. As in [D], the integrals 

I ei’4’+42’~ja, a2 di9 da dy, j= 1,2, 

are C” functions of x and z: one first integrates in g (resp. f3), and then 
uses the rapid oscillation of the exponential in the remaining variables to 
integrate: by parts, which completely overwhelm the loss of $ when differen- 
tiating ir x or z. We are thus left with the main term 

KA, n a2(~, Z) = s eiol(X.Y,e)+(2(Y~i~u))b(x, y, Z, 8, 6) dtl da dy, (2.11) 

with b = ( 1 - x1 - x2) a, a2 being supported where [0(- 101. One introduces 
a new phase variable J = I(& a)[ y, .phase function 4(x, z, 8, rr, j) = 
C&(X, J/ (6 4l,@ + MiW, 41, Z, 4, and amplitude 

a(x, 2, 8, G, jq = l(e, a)] + b 

one eas ly checks that a E S$‘i,,(R” x R”; R2m+n). Forthermore, 4 is a 
nondegenerate phase function that parameterizes the diagonal. Modulo 
C”, we have 

where 4 parameterizes the diagonal and a is of type f, f and of the correct 
order to make A I A : of order 0. It remains to show that we can replace 4 
by the usual parameterization of the diagonal, &,(x, z, 5) on R” x 08” x R” 
and a t my an a0 E S&,,2 (KY x R”; Rn). This follows from the fact that 
Hiirmanler’s result on the equivalence of classes of oscillatory integrals 
delined 1)~ different phase functions parameterizing the same Lagrangian 
still holcls for amplitudes of type (;, I). Following Hiirmander [H I, 
pp. 142-1471, we first decrease the number of phase variables as much as 
possible. The key point is that in the integral (3.2.4) of [H I], stationary 
phase is replaced by integration by parts. That is, if t9 E RN is denoted by 
(e’, 0”) E RN-K x Rk, a(x, 0) E Sfl,,,,,(R” x RN) is supported in {(PI 6 
cl0’J }, alrd Q(P’, 0”) is a nondegenerate quadratic form on R“, then 

iQ(e".@')a(x, &, p) de" (2.13) 

belongs 10 S1,2, 1,2 M+k’2(W’ x RN-k). By a rotation in Rk, we may assume that 
Q(S”, 0”) =C,“=, Aje.j, with each Aj#O. Let XE P(R), with x -0 near 0 
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and x- 1 near co, and set a,(~, 8’, 0”) = (1 - x)( jfY’l/lfYl ‘j2) a(x, 8’, 0”) 
u,(.x, P, ey = ~(p3yley ii2) U(X, 81, ey. With b,(x, e’), b,(x, ef) defined by 
(2.13), using a,, u2, respectively, we have b = b, + b,. The first term we 
simply estimate by 

lbl(x, e’)I qe..,<c,e ,,,, 2 IU(~, 81, ey de~~<c(l + lerl)m+? 

For the second term, note that a, E S’$ 1,2(R” x RN). Define a differential 
operator L = IS”1 -’ CT=, (0j/2iAj)(8/a0j), so that L(eiP) = eiQ; one has 
~1 = L + c ley -2. rf CI E sp 1,2,1,2(Rn~ RN), then LUE (1/18”1) S’;/I,i://z, while 
(cmw CIE umw) ~l;/~,~,~. Using L, integrate by parts A4 times in the 
expression for b,(x, 0’): 

b,(x, 07 = J” 
clf?‘/‘/2< 

e’Q(B”,o”)(L’)M (a,(~, 8’, en)) de”. (2.14a) 
JW’I $ cqw 

The integrand is dominated by a sum of terms of the form 
ley*M (I+ IelI + leyy- I’* 0 <j d M; introducing polar coordinates, 
the corresponding term of b,lx, 0’) is dominated by 

s C’lW .,e,,,,2 (1 + ley + r)-j’* +Mti$ 

~(1 + vi) m+k+1/2-2M 

s 
Ly#e,,m,,2 (1 +r)“-j’* rj-*,,‘t 

GC(I + lerl)m+k/*-M if j-2M+k<O. 

Thus, choosing M> k arbitrarily large, we find that b,(x, 0’) is rapidly 
decreasing, and so (b(x, @‘)I d c( 1 + 10’1) m + k’2. Derivatives of b(x, W) are of 
the form (2.13), with a replaced by a derivative, and are handled in the 
same manner, yielding b E S~2$2(~n x lFPk). In the application to (2.12) 
(where the spatial variables are denoted by (x, z)), the number of phase 
variables is decreased in this way to the minimum possible for a pseudo- 
differential operator, namely IZ, attained by the standard phase &,(x, z, [) = 
(x - z) f t. The resulting expression for the Schwartz kernel of A 1 A F is 

KAIAI*(x, z) = jRn eis(X-z*e’)b(x, z, 0’) de’, (2.14b) 

with b E S&, ,,& l% ** x Rn) and $ parameterizing the diagonal. By [H I, 
Theorem 3.161, 6 and & are equivalent in the sense that there exists a 
diffeomorphism @ : R2” x (R”\O) + R2” x (R”\O), homogeneous of degree 1 
in the last variable, so that 70 @ = c+& Making the corresponding change of 
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variable in (2.14b), we preserve the symbol class and obtain a representa- 
tion of A, A T as a pseudodifferential operator of order 0 and type (i, 1). 
This fin shes the proof of Proposition 2.7. 1 

Propclsition 2.7 immediately implies Theorem 2.6 when N*S, is a 
canonicd graph. When N*S, is merely a local canonical graph, we form 
microlol:al partitions of unity xi Pj(x, D) = I= Ck Q”(y, D), such that on 
the supijort of each pj(x, 5) .qk(y, q), N*S, is a canonical graph. Then 
A i = Cj,I, PjA, Qk = xj,k Af; each Af is a Fourier integral operator with 
amplitucle of type i, 1 to which (2.7) applies, finishing the proof of (2.6). 

We n3w relate the above results to the singular Radon transforms of 
Phong and Stein. We are going to follow closely their notation; in 
particuliy for simplicity we limit ourselves to the case of hypersurfaces. 
A singular Radon transform, R, is defined by integrating a function defined 
on a srrooth manifold X of dimension M + 1 along a hypersurface X, 
passing through each point PE X against a distribution supported on X, 
having ;. singularity of the type of a Calderon-Zygmund singular integral 
at p. A I ondegeneracy condition, called rotational curvature, is imposed on 
the family of Xp’s. Explicitly, using local coordinates (t, x, s, y) on X x X, 
with t, s E [w, x, y E [w”, the hypersurface through a point p = (t, x) is given 
by 

X,={(s,y):s=t+S(t,x,y),yE[W”), (2.15) 

where S: [w x [w” x R” + [w is smooth, S(t, x, x) = 0. 
Let S =((t,x,s,y)EXxX: t-s+S(t,x,y)=O}, S,=A,. Then S,c 

S, z Xx X with codim S, = d, = 1, codim S2 = d2 + d, = n + 1. “Rotational 
curvature” is 

d:, y S( t, x, x) is nondegenerate, VXEX. (2.16) 

This is coordinate invariant and, as noted in [P-S I], is equivalent with the 
conditio 1 that N*S; be a local canonical graph near A.*,. The singular 
Radon t -ansform is defined by 

Rf(t, x)=s K(t, x,x-Y)f(t+S(t,x,y),y)dy, (2.17) 
R” 

K(t, x, .) being a smooth family of Calderon-Zygmund kernels on [w”. The 
Schwart;, kernel of R is 

KR(trX,S,y)=6(t-s+S(t,x,y))K(t,x,x-y). (2.18) 

Since 6( ) is a conormal distribution for the origin on [w’, and a Calderon- 
Zygmunl kernel is conormal for the origin in BB”, it is natural to expect 
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that KR belongs to a product-type conormal space as described in 
Section 1. In fact, choose coordinates (z’, z”, 2”‘) E IR x [w” x I!?+ ’ on Xx X 
such that S, = (z’= 0} and Sz = ( z’ - z” = 0 >. Clearly, there is an s0 E R - 
such that KR E Hz,(Xx X) for all choices of K. To show that 
K, E I( X x X; S,, S,), we must show that all the iterates Y, . . + V,K, E H;& 
(Xx X) as well, where each V, E V(S1, S,). By (1.11) it is enough to show 
that &L>$,D$,((z’)” (z”)’ KR) E H;,JXx X) for all 01, p, y, 6, p such that 
IpI 3 1~1, 161 -t- IpI > Ial -t IpI. But since K, is a b-function in z’, the 
expression in question is zero if Ip( b 1; thus we need only consider p = 0, 
and thus a = 0. The question is then reduced to whether DfTrD;,,, 
((z”)’ IYR)o IIf& for all 161 3 //?I. But this follows from (1.2) and the fact 
that K is conormal for the diagonal. 

To compute M and M* for K,, we use (1.24). Since R, away from the 
diagonal, is a generalized Radon transform associated to the family Xp 
of hypersurfaces [GUS], it is a Fourier integral operator of order 
-(dimX,)/2= -n/2 on N*SI\N*S2. Hence M-n/2= -n/2, so M=O. 
Microlocally away from N*SI, R is easily seen to be a pseudodifferential 
operator of order 0, and thus M’ = 0, putting K, E I’,“(X x X, .Sg , S,). The 
L* boundedness of R then follows from (2.6). 

To prove the boundedness of R on L “, 1 K p < co, Phong and Stein use 
an analytic family of operators, R,, y E C, for which R. is essentially R. Let 
(6,,( -) be an analytic family of distributions on Iw with Fourier transform 
smooth near 0 and in the classical symbol class S, Re(y)(lR). They define 

&AZ, xl = j K,( t,x,x-ylf‘(t+S(t,x,y))dy (2.19) 

with K,(t, n, x - y) = Ix - yle2 #,(1x - yip2 (t - s + S(t, x, y))) 
K(t, x, x - Y 1. 

For Re(y) >O, R, is an operator of Calderon-Zygmund type on X, 
considered as a space of homogeneous type for a family of parabolic balls, 
and so is bounded on LP, 1 < p < cu, while for Re(y) > 3/4-n/2, it is 
proved in [P-S II] that R, is bounded on L*. Analytic interpolation is then 
employed to establish the Lp boundedness of R,, and hence R. 

We modify this analytic continuation slightly by first straightening out 
S, in Xx X. Let (z’, z”, z”) be the coordinates on Xx X introduced above, 
SO that S, = {z’= 01. Then K,(z) = G(z’)@K(z”, z”‘; z“), where K is 
conormal for z” = 0 and thus has an oscillatory representation K(z; z”) = 
s W” eiz*‘r’a(z; <“)&” with aoS’(XxX; H”). (By using a smooth cutoff to 
restrict ourselves to a compact subset of Xx X, we can assume that a is 
smooth at 5” = 0.) This gives an explicit representation of K, as an element 
of rO,O(xx x; s,, S,): 

KH(Z)=jRn+, eifl’.r’+r “-5~‘l(5’).a(z;5“)dS’dS”, (2.20) 
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with 1 -QES’,‘(XX X; [w’, [w”). Now define 

~~(4=lz”lr*4, j$ ( > 
zqz; z”), ye@. (2.21) 

First tz king the partial Fourier transform in <‘, obtaining $,( lz”/ * 5’) 
K(z; z”), and then taking the Fourier transform in <“, making use of the 
classical type of $,, we get that 

with a 5 S-Reo’),2Re(y)(X~ X; R, Iw”). Thus, by (2.6) we obtain the local L* 
boundlllness of the operator R, with Schwartz Kernel K, for -n/2 < 
Re(y) < 0, improving slightly the result of Phong and Stein. On the other 
hand, for Re(y) > 0, i?, is still a Calderon-Zygmund operator for a family 
of balls satisfying the Vitali covering condition, since a diffeomorphism of 
Xx X fixing the diagonal pointwise does not change this condition for a 
family of parabolic balls (cf. Nagel and Stein [N-S]). We have thus 
recovered the result of Phong and Stein: 

THEOI:EM 2.23. Let R be as in (2.17). Then 

R : Gl#7 + %(a, l<p<co. 

3. THE FLOWOUT CASE AND OPERATORS WITH CONICAL SINGULARITIES 

We now turn to proving boundedness of operators in the class Zpv’(d, A) 
when / c (T*W\O) x (T* W’\O) is a flowout, using the composition 
calculus described in Section 1. Interesting examples of such operators will 
be furni:,hed by singular integral operators associated with variable families 
of cones satisfying a certain tangency condition. 

Let 1 c (T*W\O, w) be a smooth, codimension k conic submanifold, 
1 < k < I!, which is involutive: 

tlie ideal of smooth functions vanishing on C is closed under 
the Poisson bracket. (3.1) 

Thus, T x,J* c T,,,,, C is a k-plane for all (x, <) EC, and, as described in 
Section 2, the distribution { T,r,,,Z”},,r,,,sz is integrable, with integral 
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submanifolds E,,,,, called the bicharacteristic leaves of L’. The flowout of 
E is the canonical relation A, = A t (T* lR”\O) x (T* R”\O) given by 

(3.2) 

Note that the projections rci, q: ,4 + T*W\O have constant rank 2n -k. 

THEOREM 3.3. Let A E Zp~‘(W’, R”; A, II), with A = A, as in (3.2). 
Then A : H&,,,(W) + HfGso( R”) continuously, Vs E R, if 

max(p+i,p+f)< --so. 

Proof. Since ZP’( A) 0 Ip,‘( A, A ) c Ip + “‘3’( A, A ), we may assume that 
s,=O and max(p+ k/2, p+ I)=O. We may further suppose that A is 
properly supported. By the composition calculus of (1.39), the product 
A*,4 lies in Zp’,“(A, ,4), with p’= p 2 + k/2, 1’ = 21 -k/2 still satisfying 
max(p + k/2, p+Z)=O. Furthermore, the principal symbol is o,(A*A)= 
la,(A)l’>O. We now repeat in this setting a standard proof of the L2 
boundedness of pseudodifferential operators, due to Hormander [H I]. 
(This method of proof was used in [U] for the operators considered in 
Section 2; it is also implicit in the geometrical proof for cones in [G].) 
Namely, we will construct a B such that 

A*A+B*B=c*Z mod 1-‘/*(A), (3.5) 

for some c > 0. By the result of Hormander on L2 boundedness of Fourier 
integral operators associated with canonical relations that drop rank by at 
most k [H I, p. 1821, an element of Z-““(A) is bounded from L&,JR”) 
to Lo,,, so that (4.4) implies the L* boundedness of A. 

For a fixed compact Kc R”, we will consider A acting on distributions 
supported in K. For m E R, set 

1, = @ Zp,‘(A, A), 
pil=m 
p< -l/2 

(3.6) 

where the right hand side consists of finite sums, so that m 2 m’ =s. Z, 2 Z,,,, 
and n, Z, =ZPk’*(A). We now consider two cases. If p + Z=O, so that 
1> k/2, let c be any real number greater than lim sup, _ m lo,(A)(x, t<)l for 
all (x, 5)~ (T*R”\O)I,, and let b,= (c’- loo(A)I*)’ Then &,E S-k’2,k/2 
(R” x R”; A, C) and by the symbol calculus (1.3) there is an operator 
B, E I-k’2,k’2(A, A) with a,(B,) = b,. By (1.37) and (1.39), 

B,=A*A+B;Bo-~*i~Ip,. (3.7) 
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We nou look for a finite sum Bi = xi B,,i E ZP 1 such that 

A*A+(B,+B,)*(Bo+B,)-c2zEz~,. (3.8) 

We nec:d CiB~B,,i+B:iB,+Ci,j BtiB,,j=Bi mod I-,; since each 
BriB,,j~ I-, and the principal symbol of the B,,i are real, by (1.39) we 
may tal;e b,,j= igo(B G,,(B,,~)ESP~*‘~([W” x [w”; A, C) with pi+ li= -1, 
pi< -k/2. To each b,,i there corresponds an operator Bl,i~ZP’7’z(A, /i) and, 
letting ,3, = xi Bl,i, (3.8) is satisfied. Continuing in this fashion, we may 
find opt rators Bi E Z_i such that 

Asymptotically summing, there is a BeZo such that A*,4 + B*B- c2Z6 
fi; 1 Zmj = ZPk”(n), yielding the L2 boundedness of A. 

On tile other hand, if (p, I) lies on the other edge p = -k/2, p + I < 0, 
then w(: simply take B,=Z, c= 1, and A*,4 + B~Bo-Z~Z2p+k’2~21-k’2 

(4 A)c Zz(p+,p We now proceed to find operators Bj~ Z2jcp+l), j= 1, 2, . . . . 
as abov:, so that (3.9) is satisfied; the remainder of the proof is the same. 

Q.E.D. 

The llreceding theorem can be applied immediately to obtain estimates 
for micl olocal powers of a real principal type operator. Let P(x, D) be a 
properl!’ supported mth order pseudodifferential operator of real principal 
type, i.e , p,,,(x, 5) real and Vp,(x, 5) # 0 on z = {(x, 5): pm(x, 5) = O}. For 
IE@, clefine P” as in [I] or [A-U]. In [A-U] it is shown that 
P” E I”” - 1)Re(‘)-11/2,Re(‘)f1’2, where A is the flowout of ,X. By Theorem 3.3, 
with k:= 1, P” will be smoothing of order so if max(m Re(l), (m- 1) 
Re(l)) zE -so. Thus, we have 

THEO <EM 3.10. (a) P”: H&,,p + H;o;mRe(i.), Re(J) B 0. 
(b) Pi: H&,p + Hfo;(“- l)Re(i), Re(1) < 0. 

To g ve a more substantial application of (3.3), for k = 1, we now 
formulate some diffeomorphism-invariant classes of singular integral 
operato:s with conical singularities. Since all of the results are local, 
we will continue to work in [w”. Fix an integer m, 2 <m < n - 1. Let 
y”:R”xSm-lxlW-+S”-l be a C” map such that for each x E IR”, the map 
Sm-13.i)~y(X,O,O)ES”-l is an embedding with image yX c S”- ‘. 
Define :’ : WxS”-‘xR+R” by 

Y(X, (-9 r) =x + ryO(x, 0, r), (3.11) 
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and let r, = {~(x, w, r): (0, r) E S”- ’ x 88 > ; then rX is a cone-like variety 
in R” with vertex at x, and the fX’s form a smooth family of such. Set 

r=((x,y)E[W”XIW”:yEr,}. (3.12) 

Near dR., r is smooth and of dimension n + m. 
Next consider a smooth family of pseudodifferential kernels supported 

on the TX%. Let KE~‘(R”xS”-’ x R) be a distribution which is smooth 
in x and w, i.e., WF(K)c ((x,w, I, <,a,p)E T*(wxSm-‘x R): <=o, 
Q =O>. Then by a standard result on restrictions of distributions, each 
K(x, CU, *) E 9(R) is well defined. We will further assume that K has the 
specific form 

eirPa(x, co, p) dp, (3.13) 

where a E Sf,,,( R” x S” ~ ’ x [w x (R\O)). We have KY’(K) c {(x, o, r, 
<,G,p): <=O, $2=0, r=O}. Define a distribution XX~‘(R”XIR”) by 

(;y^'f)=lRnxp4xa K(x, 0, r) f(x, I+, w, r)) dx da dr, 

f E C~(R” x BY); (3.14) 

and define an operator with Schwartz kernel X 

~(x’=jsm-,xR W, 0, r) f(y(x, u,r)) du dr, fE cgRn). (3.15) 

We wish to find conditions on r so that TEI(A, A) as in Theorem 3.3; to 
do so, we use the characterizations of I(d, A) discussed in Section 1. 

First, let 

PROPOSITION 3.17. WF(X)’ CI: LI~.@~ u VT’ and thus 

WF( Tf) c WF(f) u (N*T’o WF(j-)). 

Proof: Let g:R”xS”-‘xR+R”xR”, Ax, 0, r) = (x, y(x, u, r)). 
Then X is the pushforward of K by g, .X = g,K, in the sense of [H I]. 
Thus, w%(Jfx) = ((x7 5, Y, rl): dg*(x, 0, r)(t, YI) 6 WFW), SOme (0, r)E 
Sm.-’ x R>. But dg(x, w, r)(X, 52, R) = (X, X + Ry’(x, w, r) + O(r))=, 
dg*(x, u, r)(<, 9) = (5 + ? + O(r), O(r), (rl -y”)). Hence, WF(X) c 
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{(x, 4, v, r): x = y, 5 + rl = O} u {(x, 5, Y, v): (x, Y) E r\A, 
(5, u) 1 T,x,,J} c A’p,nu N*f’. Q.E.D. 

This s suggestive of (1.8), but in order to go further we need that N*T’ 
be cant iined in a smooth Lagrangian that intersects A T*wn cleanly and in 
fact is :ontained in the flowout of a smooth, codimension 1 involutive 
submanifold CC T*W”\O. Thus, we at least need to assume 

N*T’ extends smoothly past (T*(W’xR”)\O)~,,,, (3.18) 
-- 

i.e., N* r’ is smooth. We will denote N*T’ by A. 
To bc:tter understand what condition (3.18) means in terms of the cones 

r,, consider the intersection A TeRn n N*T’. Without assuming (3.18), this 
is of the form A, for some closed conic set XC T*R”\O. By the proof 
of (3.; 7), lim,,, N*T’ n T~,r~.x,w,r~~(Rn x R”) = {(x, 5, x, t): 5 1 span 
{y’(x, al, O), d,y”(x, u, O)(T,,,S”-‘)}}, so that 

~n(T.T~“\O)= u (span{o, T,Y,})‘, 
0 E ;jr 

(3.19) 

which ii, an (m - 1 )-parameter union of ( IZ - m)-planes in T,* R”. Thus, if C 
is smoa th of codimension k, we must have 1 < k < m. 

Let I.S consider the case k = 1, which is the one of interest, in more 
detail; it will be seen that (3.18) is actually a curvature condition. In light 
of (3.15’) it is natural to ask: Which (m - 1)-dimensional submanifolds 
S c S” ’ have the property that D = u ~ 8 s (span {g, T,, S} )’ is a smooth 
(n - 1 )- limensional submanifold of R”* ? Working locally on S near a 
point r~), let {e,, ,,., e,-,} and (CO”‘, . . . . cJ-‘} be orthonormal frames,for 
TS and N*S, respectively, with respect to the standard metric on S”- ‘. 
Then ue may locally parameterize Q by Sx (UP-“\O) 3 (~,0) + 
Cy:A 0, o’(a), where we are making the natural identification of the oj’s 
as elerients of r? c R”‘. This will be an immersion at (a, 0) iff 
(ve,(Z~ ej"'(o)));Zr" are linearly independent modulo span{o”(a), . . . . 
w”-‘(a)} = N,*S; by the G auss equation [K, p. 903, this will hold iff the 
second fundamental form of S in S”- ’ is nonsingular in the direction 
cj e,u’. Since we want this to hold for all 8 E R”-m\O, we are naturally led 
to the f Alowing condition on S: denoting the second fundamental form of 
S at (T in the normal direction v by A”, 

A”: T,S -+ T,S is nonsingular, VVEN,*S\O, YES. (3.20) 

The ab 3ve discussion shows that Sz is immersed if (3.20) holds, with g 
being e nbedded if we impose the additional global assumption 

Sz has no self-crossings. (3.21) 
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Applying this to S= yX as above, one sees that if each y, satisfies 
(3.20) and (3.21), then C, given by (3.19), is smooth and codimension 1 in 
T* lP\O. Furthermore, it is straightforward to see that /1= N*T’ is smooth 
and intersects ATtiRfl cleanly at A,. 

Now, with (3.15) in mind, define S: C,“(P) -+ C,“(R” x SmP1 x R) 
by Sf(x, o, r) =f(y(x, w, r)). The Schwartz kernel of S is 6,, where 
W= ((x, w, r, y): y = x + ry’(x, o, r)}, which is smooth and codimension 
n in R”~S”~~xlwx[w”, and thus SE I-m/4( C,), C, = N* w’ c 
(T*(R” x SmP ’ x R)\O) x (T* IY\O). Then we find the oscillatory integral 
representation for the Schwartz kernel of S 

K.&G w, r, Y) = J 
ei((-~-y).5+ryo(.~,w.r).S)b(X, y, w, r, 5) d< (3.21) 

with ~ES~([W~X[W”XS”-~ x R! x (!Y\O)). Then we have 

X(x, y) = / ei(‘u+(X~Y)~~fryo(X~o~r)~~‘a(x, co, r, CT) b(x, y, co, r, 0 d[ dw dr. 

(3.22) 

We now use the characterization (1.35) of elements in Z(A, A), to prove 

THEOREM 3.23. Let T be as in (3.15) with the family of cones satisfying 
(3.18). Then TE Z--m’2,p+m’2(A, A) with A the diagonal and A = N*T’ as in 
(3.16). 

Using Theorem 3.23 and Theorem 3.3 we obtain 

THEOREM 3.24. Let T be as in Theorem 3.23. Then 

T: H&,,,( IFI”) + ZZ;; ““( R”), VSER, 

max(-y,p)C -so. 

Proof of Theorem 3.23. Let Pi, 1 < i < r, be pseudodifferential operators 
of order 1 with principal symbol pi vanishing on A’ and A’. Then 

p,x = J ei4’“.“.“.‘.‘,“’ pi(Xy y, 5, rV,y, .t) ab d< do do dr + Bi, (3.25) 

where 

~(x,Y,W,r,5,a)=ra+(x-y).5+ryo(x,o,r).r (3.26) 
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and Bi E ~4,,~ with 

Jz& = {pED’(R” x Iw”); p is of the form (3.22) with a ES’, b E Sal. 

(3.27) 

Using tl at pi vanishes on A’ and the fact that (xi- yj)ei4 = D<,e’@, re’) = 
D,e@ WI: obtain by integrating by parts in the ti and G variables 

(3.28) 

Repeatir g this argument inductively we get 

P, ... PrK~~~-r,r +dq-,m,,,-,+ ... +sf$o. (3.29) 

Now let us consider the terms ~$1 j,.j with p - j 6 -2. For elements in this 
class we can intergrate out the a-varrable and we obtain for any A E J$ ~ i, j, 
j>p+z 

A = 
s 

ei(“~‘)‘S+‘Yo(x’w.‘)-5C(r, x, ,+ 5) &do dr (3.30) 

with CEC~~~~*([W,S~([WXS~~~X(IW”\O)). We note that A’ is 
paramet:rized by the phase function x(x, y; r/It/, w/151, r) with 

x(x, Y, r, w, t) = (x - Y). t + vo(x, 0, r). 4. 

Now, WI: use the fact that the principal symbol vanishes on A’ to conclude 
that Pi/ is of the form (3.30) for some 

Summarizing the arguments above we have proved that 

P, ... PrK~~-2,,+2+~-,,,+,+ ... +&Lo. (3.31) 

Now to define the oscillatory integrals in A,,, with [cl/ + I/?1 bounded we 
have to integrate by parts at most a finite number of derivatives in the x, y 
variables, proving that d-2 + &- I,P + r + . . . + &P,o is contained in a fixed 
Sobolev space. This concludes the proof that TE Z(d, A). To determine the 
order we simply observe that T is a pseudodifferential operator of order p 
on the d agonal and a Fourier integral operator of order -m/2 on /i away 
from the intersection. Q.E.D. 

4. ESTIMATES FOR RESTRICTED X-RAY TRANSFORMS 

0pera:ors with conical singularities of the type considered in Section 3 
arise naturally in integral geometry. Combining the results of Section 3 
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with those of [G-U], we obtain sharp local L2 estimates for the restriction 
of the X-ray transform to an admissible line (or, more generally, geodesic) 
complex, %?. (Wang [W] obtained global Lp estimates for some line 
complexes in R*.) For a large number of general ~inadmissible) complexes, 
it will be shown that one actually obtains better estimates; this reflects the 
fact that the Gelfand condition for admissibility forces the conormal bundle 
of the point-line (or point-geodesic) relation to sit in T*Mx T*% in a 
more singular fashion that it does in general. 

To put this in context, let X and Y manifolds of dimension n, Cc 
(T*X\O) x (T* Y\O) a canonical relation, and 71 and p the restrictions to 
C of the projections from (T*X\O) x (T* Y\O) onto T* Y\O and T*X\O, 
respectively. Let R E I”(X, Y, C) be a Fourier integral operator. At a point 
c0 E C, the differential dn(c,) is invertible (i.e., has rank 2n) iff dp(c,) is, in 
which case co has a neighborhood in C which is the graph of a canonical 
transformation from T* Y\O to T* X\O. If dz and dp have rank 2n 
everywhere, then C is a local canonical graph and R : H&,& Y) + H& “(X), 
VIE R [H I]. On the other hand, by another result of Hormander, if dz 
and dp drop rank by no more than 1 at each point of C, R: H&J Y) + 
H&“-“*(X) (under th e mild additional assumption that it: C + Y and 
r;i : C --f X are submersions.) In general, this result is sharp, as the case when 
C is the flowout of a codimension 1 conic submanifold in T*X\O shows. 
One expects, of course, that for a C which is not a local canonical graph 
but for which x and p become singular in specific ways, there should be a 
loss of so derivatives, for some sharp value of so, 0 <so < I. An example is 
provided by the work of Melrose and Taylor [M-T] in scattering theory. 
There, C’s for which rc and p have at most a Whitney fold were introduced 
and termed folding canonical relations. It was shown that, using canonical 
transformation of T*X\O and T* Y\O, any such C can be conjugated to a 
single normal form; on the operator level, any R E P(X, Y; C) can be 
conjugated by elliptic Fourier integral operators to an Airy operator on R” 
with symbol in S&+““, giving the estimate R : Hfomp( Y) + HfO; m -- ‘j”(X). 
We now use the results of Section 3 to show that for a certain class of 
canonical relations arising in integral geometry, somewhat more singular 
than the folding canonical relations, there is a loss of i derivative. It should 
be noted that there is no single normal form for the canonical relations 
described below; there are already obstructions to equivalence at the 
quartic terms in a formal power series calculation. 

DEFINITION 4.1 [G-U]. A fibered folding caflonical relation Cc 
(T*X\O) x (7’* Y\O) is a canonical relation such that 

(4.la) at each point of C, z is either a local diffeomorphism or a 
Whitney fold; letting L t C denote the fold hypersurface; 
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(4.1)) at each point I,E L, dp drops rank simply by one and 
ker(dp(l, )) c T,,L, so that p] L has one-dimensional fibers, and the map dp: 
~-I(~(~~)) -+ G~~-~.~~(~~~,~~~*~) defined by &Y(1) =~~(~)(~~C) is an 
immersic n; 

(4.1’:) ~(~5)c.z T* Y\O is embedded, pIc,L is 1 - 1, and p(L) c 
T*X\O :s embedded symplectic; and 

(4Li) the libers of p are the lifts by n of the Hamiltonian bicharac- 
teristics ‘If 7r(L). 

(This :ype of canonical relation has also been considered by Guillemin 
[Gu II] who pointed out that (4.ld) is in fact redundant.) 

As is shown in [G-U], canonical relations of this type arise naturally in 
integral ,:eometry. If J? is the (2n - 2)-dimensional manifold of geodesics 
on a ricmanniom manifold (M, g) (when this makes sense) satisfying 
certain a;s~mptions and W’ t JZ is a globally admissible geodesic complex 
satisfyiq a curvature condition, ((2.23) in [G-U]), then the restricted 
X-ray transform (integration over geodesics) gW f = (W,,,f)l, is injective 
modulo :a on distributions of compact support with appropriate restric- 
tions on their wave front sets. An important ingredient in the proof is the 
fact that Ye, E I‘ “*f%?, M; C) with C a libered folding canonical relation as 
above. I:1 addition, C’o Cc d T*M w L& c (T*M\O) x (T*M\O), where 
A l is the diagonal and nnfL) is the flowout of n(L). The symbol of 
B?io”BW .s then computed, using only the fact that n*(o,,,) is a folded 
symplect c form on C (for definitions and related material, see [G-U, 
Gu II]), and is shown to be elliptic, allowing the construction of a relative 
left-pararnetrix for &?*. 

THEOR 3~ 4.2. Let (M, g) be an n-dimensional riemannian manifold, and W 
be an adF?issib/e geodesic complex satisfving the assumptions of Theorem 2.1 
of [G-U 1, and with the projection ( (x, y) E A4 x V: x f y } + M proper. Then 
for any closed set Kc T*M\O contained in the support of the Crofton 
symbol a,ld with compact projection in M disjoint from the critical set of ‘ik 
there is 6 Fourier integral operator BE I-1J2(An(L1) such that 

II Bw f II H'"'l~~~CS,RllfIIH~. feH‘(M)n&$,s>---b, (4.3 1 

and, for : = -$, 

(4.4) 
Proof. The operator T= B$o.BW can be described explicitly as follows. 

For x E M, let qX = (y E %‘: x E y > be the geodesics of the complex that pass 
through ,c; by assumption, we are working near a generic point x, so that 
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%& is one-dimensional. Assume for the moment that %$ is connected and 
hence diffeomorphic to S’. Parameterizing the geodesics in ‘ix; by an 
arc-length parameter vanishing at x, we obtain locally smooth maps y”: 
MxS”xlR-+S”-’ and y:MxS’x!R-+M as in Section 3. For some 
smooth, nonvanishing density C&.(X, w, r) on S’ x R, 

which is of the form (3.15) with m= 1 and a~S~~((Mx5”‘)x ~~\O)). In 
general, T is a sum of such operators. Thus, by the discussion in 
Section 3, TE I-1,o(d, exult), the smoothness of A = AZ(L) following from 
the curvature assumption on 5%’ alluded to above. By Theorem 3.3, 
T: fC,,,GW -+ ff,oc ‘+li2(M), Vsg R. By duality &: H,z4,(iW) -+ L’(V). 

Now recall that if y E &!, the tangent space TyA can be identified with 
.I:, the space of Jacobi vector fields along y which are orthogonal to y. 
Denoting this isomorphism by T+Z3Xtt @S)E Jt, we also have an 
identification between smooth vector fields on 4 (or %‘) and smooth 
families of Jacobi fields, which we denote by X(y) t, p((y, s), Furthermore, 
we have 

~(~~~)(Y)=~~(~(Y, *ff)(rh fe C,“(M) (4.6) 

if X is tangent to %‘. Hence, if P is an mth order partial differential operator 
on g, there is a smooth family of mth order operators P(,, s) along the 
geodesics of 55’ such that 

P(%ff)(Y) =%(h4 *).f)(Y)9 .fE Wm. (4.7) 

For such a P, I’&&: ~~~~‘4(~) -+ t2(%‘) and thus, since P is arbitrary, we 
have 9?*: ~~~~‘4(~) -+ H”(g), m = 0, 1,2, . . . . By interpolation we obtain 
(4.3) for SE R, s>, -b. 

It is shown in [G-U] that T is elliptic on the support of the Crofton 
symbol and there exists a BEI-‘!~(~.~~)) and a T-’ EZ’*~(~, .4,& such 
that T--’ 0 T= I- 3 on 8;; by Theorem 3.3, T-l: H&,,(M) + II& l(M), 
Vs E R. From this, since (4.3) implies that &?L: H&,,,* -t HfOz 1’4 for s < 0, 
it follows that the relative left-parametrix T- ’ 0 8: for &?W maps 
L&,,,(%) 4 H;,)14( M), yielding (4.4). Q.E.D. 

Remarks. (1) One expects (4.3) to hold for all s E R2 
(2) The discrepancy between the norms on the left- and right-hand 

sides of (4.4) arises for the same reason as the loss of 1 derivative in the 
parametrix of an operator of real principal type. This is already reflected 
in (3.10). 

‘The authors recently proved this. (See “Composition of Some Singular Fourier integral 
Operators and Estimates for Restricted X-ray Transforms,” preprint.) 
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We next show that the gain of $ derivative in (4.3) is in fact sharp. Let 
M = R3 vith the Euclidean metric, and V c &? = M, 3 be the line complex 
consisting of all lines (light rays) on the light cone {ii = XT + xi} and their 
translate;, i.e., Q? is all light rays in 2 + l-dimensional Minkowski space. 
Parametl:rize %? by R2 x S’, with 

%w.fx,y,8)=j f(x+tcos8,y+tsin8,t)dt, f E a’(R’). (4.8) 
R 

A simple calculation yields 

s 2n 9’6 &I, x2, x3) = g(x, -x3 cps(O), x2 -x3 sin(B), 0) de, gEfiY(%). 
0 

(4.9) 

Let f= ,7(x, -x3) cp(x,, x2, x3), where H is the Heaviside function and 
cPECom, p(O) # 0. (We are trying to concentrate the Fourier transform of 
f along a line on the dual light cone,) Then fe Ht&,“(R3), V’E > 0. For 
g E qv’), 

= j gb, Y? 0) 
[ 
j 4x+x3 cos(Q, y (I-cos(e))x,~x 

+ x3 sin(B), x3) dx, 
1 

dx dy d0. (4.10) 

Locaiizirg near x, y, 8 - 0, we see that near the origin 9&f is smooth in 
y and essentially homogeneous of degree 0 in (x, 13) with respect to the 
dilations (x, 0) --, (6*x, 68); thus the partial Fourier transform is roughly 
homogeneous of degree -3 with respect to these dilations. From this a 
routine zalculation shows that 5&f E H3’“-‘(V), VE >O, but gVf$ 
H3’“(V). 

Now ll:t us turn to general geodesic complexes %? which do not satisfy 
Gelfand? admissibility criterion, For example, one may consider small 
deformat ons, in the C” topology, of a fixed admissible complex, Fo. Since 
the canortical relation Co = N*Zb, where Z. c M x ‘;kb is the point-geodesic 
relation [(x, y): x E y }, for %Yo is a fibered folding canonical relation, near 
a point toe Co there are local (nonhomogeneous) coordinates (x, t), 
vanishing at co, and local (noncanonical) coordinates on T*M and T*Q?& 
such that 

71(x, 5) = x, (‘, $ 
( > 

(Whitney fold) 
(4.11) 

P(X, o= (x’, x,r,, 0 (fibered fold or blow-down). 



SINGULAR RADON TRANSFORMS 231 

Perturbing %?,, into a general nearby complex 5?? corresponds to perturbing 
the maps rc and p in C”. Since Whitney folds are stable, a small perturba- 
tion of 7t will still be a Whitney fold. On the other hand, a generic small 
perturbation of p will be either a Whitney fold (S1,O singularity), a simple 
cusp (S,, 1,0 singularity), or higher singularity (Golubitsky and Guillemin 
[GO-GUI). Suppose that the former holds; then the corresponding geodesic 
complex %? has a restricted X-ray transform B&EZ-~/*(~), with C 
belonging to the class of folding canonical relations, introduced by Melrose 
and Taylor [M-T], near cO. It follows from the results of [M-T] that, 
microlocally near cO, B& can be conjugated by elliptic zeroth order Fourier 
integral operators to an Airy operator on R” proving 

THEOREM 4.12. Let %? c A be a geodesic complex and z = { (x, y ) E 
MxW: x~y}. Zf C=N*Z’c(T*W\O)x(T*MxO) is a folding canonical 
relation, then 3?w : H&,,,(M) -+ HfG li3(%?), Vs E II& 

Explicit examples of families of geodesic complexes {%?6}EE R, with 5$, 
admissible but %$ satisfying the hypotheses of (4.12) for E #O are easily 
constructed. For example, the line complex associated with the light cone 
in IX3 considered above can be perturbed as follows. Equip R3 with 
the Heisenberg group structure with Planck’s constant E: (x1, x2, x3). 
(YI 7 Y2? Y3) = (x1 + Yl? x2 + Yz, x3 + y, + E(X, y, - x2 yl)), and let % be 
the line complex consisting of all light rays through (0, 0,O) and their left- 
translates. Then w,, is admissible and W,,: Hiomp + Hfoz ‘j4 by Theorem 4.2, 
but for E #O small, Q$ has a canonical relation C, which is folding, and 
wwe : Kemp + H;;1’3 by (4.12). 

CA-U1 

CBI 

Pal 

CC-VI 

CD1 

CD-HI 

[G-S1 
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